首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   4篇
测绘学   1篇
大气科学   3篇
地球物理   20篇
地质学   17篇
海洋学   34篇
天文学   15篇
综合类   3篇
自然地理   13篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   8篇
  2005年   10篇
  2004年   5篇
  2003年   7篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1989年   2篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1975年   1篇
  1970年   1篇
排序方式: 共有106条查询结果,搜索用时 343 毫秒
61.
Abstract— Using the Terrain Camera onboard the Japanese lunar explorer, SELENE (Kaguya), we obtained new high‐resolution images of the 22‐kilometer‐diameter lunar crater Giordano Bruno. Based on crater size‐frequency measurements of small craters (<200 m in diameter) superposed on its continuous ejecta, the formation age of Giordano Bruno is estimated to be 1 to 10 Ma. This is constructive evidence against the crater's medieval age formation hypothesis.  相似文献   
62.
Sakhalin Island straddles an active plate boundary between the Okhotsk and Eurasian plates. South of Sakhalin, this plate boundary is illuminated by a series of Mw 7–8 earthquakes along the eastern margin of the Sea of Japan. Although this plate boundary is considered to extend onshore along the length of Sakhalin, the location and convergence rate of the plate boundary had been poorly constrained. We mapped north-trending active faults along the western margin of the Poronaysk Lowland in central Sakhalin based on aerial photograph interpretation and field observations. The active faults are located east of and parallel to the Tym–Poronaysk fault, a terrane boundary between Upper Cretaceous and Neogene strata; the active faults appear to have reactivated the terrane boundary at depth in Quaternary time. The total length of the active fault zone on land is about 140 km. Tectonic geomorphic features such as east-facing monoclinal and fault scarps, back-tilted fluvial terraces, and numerous secondary faults suggest that the faults are west-dipping reverse faults. Assuming the most widely developed geomorphic surface in the study area formed during the last glacial maximum at about 20 ka based on similarities of geomorphic features with those in Hokkaido Island, we obtain a vertical component of slip rate of 0.9–1.4 mm/year. Using the fault dip of 30–60°W observed at an outcrop and trench walls, a net slip rate of 1.0–2.8 mm/year is obtained. The upper bound of the estimate is close to a convergence rate across the Tym–Poronaysk fault based on GPS measurements. A trenching study across the fault zone dated the most recent faulting event at 3500–4000 years ago. The net slip associated with this event is estimated at about 4.5 m. Since the last faulting event, a minimum of 3.5 m of strain, close to the strain released during the last event, has accumulated along the central portion of the active strand of the Tym–Poronaysk fault.  相似文献   
63.
64.
Where should we take cores for palaeotsunami research? It is generally considered that local depressions with low energy environments such as wetlands are one of the best places. However, it is also recognized that the presence or absence of palaeotsunami deposits (and their relative thickness) is highly dependent upon subsoil microtopography. In the beach ridge system of Ishinomaki Plain, Japan, several palaeotsunami deposits linked to past Japan Trench earthquakes have been reported. However, the number of palaeotsunami deposits reported at individual sites varies considerably. This study used ground penetrating radar (GPR) combined with geological evidence to better understand the relationship between palaeotopography and palaeotsunami deposit characteristics. The subsurface topography of the ~3000–4000 bp beach ridge was reconstructed using GPR data coupled with core surveys of the underlying sediments. We noted that the number (and thickness) of the palaeotsunami deposits inferred from the cores was controlled by the palaeotopography. Namely, a larger number of events and thicker palaeotsunami deposits were observed in depressions in the subsurface microtopography. We noted a total of three palaeotsunami deposits dated to between 1700 and 3000 cal bp , but they were only observed together in 11% of the core sites. This result is important for tsunami risk assessments that use the sedimentary evidence of past events because we may well be underestimating the number of tsunamis that have occurred. We suggest that GPR is an efficient and invaluable tool to help researchers identify the most appropriate places to carry out geological fieldwork in order to provide a more comprehensive understanding of past tsunami activity. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
65.
To elucidate which environmental factors affect lagoonal‐scale sea cucumber distributions in Ishigaki Island, Okinawa, Japan, intertidal and subtidal areas of three coral reef lagoons were classified into several ground divisions by bottom characteristics, and sea cucumber densities therein were compared with the composition of sediment cover, grain size and organic content, and coverage of macroalgae, seagrass, and massive corals. Holothuria atra, Holothuria leucospilota, Stichopus chloronotus, and Synapta maculata had highest densities in the nearshore areas but were rare in reef flats, probably because of wave disturbance and low areal cover of sand sediment as potential feeding environments. No relationship was observed between sea cucumber densities and sediment organic content or grain size. Thus, even if these sea cucumbers have selectivity for habitats with a high sediment organic content, the effect of such selectivity on the distribution seems to be limited to relatively small areas. The sea cucumber distributions can be classified by bottom sediment/biota composition into bedrock (H. leucospilota), sand (H. atra), and lagoonal types (St. chloronotus and Sy. maculata). These habitat selections were possibly related to various aspects of sea cucumber ecology such as refuge from predators or turbulence, or settlement and nursery place, which have implications for importance of the complexity of lagoonal‐scale topography and sediment/biota conditions for the coexistence of various holothurian species.  相似文献   
66.
Wind-induced circulation and the distribution of hypoxia corresponding to the upwelling of oxygen-depleted water (called “Aoshio” in Japan and “Sumishio” locally in Omura Bay) in Omura Bay, Japan, was examined field observations and by three-dimensional modeling. During the calm weather in summer, well-mixed strait water, in rich oxygen at the mouth of the bay intruded into the middle layer of the bay, southward and northward along the west and east coast, respectively, forming basin-scale cyclonic circulation. A stagnant water mass was formed below the center of this cyclonic circulation, and it became hypoxic water. As a result of the prevailing strong southeast (northeast) wind, the bottom hypoxia moved in a southeasterly (northeasterly) direction. This induces the upwelling of hypoxic water, accompanied by mass mortality of marine organisms.  相似文献   
67.
On the sub-kilometer S-type asteroid, 25143 Itokawa, some boulders on rough terrains seem to be exposed without any powdery material covering. Based on surface morphological features, there are two major types of boulders: one has rounded edges and corners (rounded boulders), while the other has angular edges and corners (angular boulders). The surface features of the rounded boulders suggest that they have hardness heterogeneity and that some may be breccias. The angular boulders appear to be more resistant to impact disruption than the rounded ones, which may be due to a difference in lithology. The major constituents of Itokawa may be LL chondrite-like brecciated lithology (rounded boulders) along with a remarkable number of boulders suggesting that lithology is atypical among LL chondrites (angular boulders). Some of both types of boulders contain intersecting and stepped planar foliations. Comparison with meteorite ALH76009 suggests that the planar foliations may be marks where rocks were torn apart. As lithified breccias cannot be formed on present-day sub-kilometer-sized Itokawa, it is reasonable that boulders with various lithologies on Itokawa were formed on its large ancestor(s). The rubble-pile structure of Itokawa suggested by its low density (∼1.9 g/cm3) indicates that boulders on Itokawa are reassembled fragments formed by catastrophic disruption of large ancestor(s).  相似文献   
68.
The Himalayas are a key location for understanding centennial‐ to millennial‐scale variations in the Asian monsoon, yet few studies of the late Holocene have been conducted in this sensitive area. Direct evidence for shifts in monsoonal wind strength is often limited to marine proxy records, while terrestrial reconstructions (e.g. lake levels and spleothems) focus on precipitation. Here, we present the first evidence of terrestrial summer monsoon wind strength changes from Lake Rara, western Nepal, based on Mn/Ti ratios, a proxy for lake stratification. These data indicate a link between the Arabian Sea and the Himalayas, suggesting that centennial‐ to millennial‐scale changes in wind strength occurred synchronously. Distinct similarity is also observed between Lake Rara and the southern part of China, which may support previous suggestions that the southern part of China is influenced by Indian summer monsoon. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
69.
70.
We measured the concentration of non-sea-salt sulfate () in the Dome Fuji shallow ice core (Antarctica) from the surface to 40 m depth with the aim of dating the core with reference to the record of volcanic eruptions. Three huge spikes related to large-scale volcanic eruptions were detected at depths of 12.5, 29.9, and 38.8 m, correlated to the eruptions of Tambora (AD 1815), Kuwae (AD 1452) and an unknown event (AD 1259), respectively. We identified another nine spikes related to accurately dated eruption events. The shallow ice core was dated from AD 1260 to AD 2001 based on these 12 eruption events and the assumption of constant annual snow accumulation in the periods between eruption events. The results yield a maximum correction of ∼20 years compared with the dating proposed in a previous study. The annual accumulation varied within ±∼15% of the average water equivalent value over the study period (25.5 mm).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号