首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29977篇
  免费   541篇
  国内免费   945篇
测绘学   1542篇
大气科学   2619篇
地球物理   6019篇
地质学   13723篇
海洋学   1331篇
天文学   2613篇
综合类   2175篇
自然地理   1441篇
  2023年   32篇
  2022年   47篇
  2021年   123篇
  2020年   141篇
  2019年   105篇
  2018年   4922篇
  2017年   4229篇
  2016年   2906篇
  2015年   526篇
  2014年   441篇
  2013年   533篇
  2012年   1348篇
  2011年   2983篇
  2010年   2296篇
  2009年   2587篇
  2008年   2075篇
  2007年   2462篇
  2006年   248篇
  2005年   345篇
  2004年   567篇
  2003年   532篇
  2002年   374篇
  2001年   149篇
  2000年   137篇
  1999年   86篇
  1998年   95篇
  1997年   100篇
  1996年   58篇
  1995年   72篇
  1994年   68篇
  1993年   44篇
  1992年   31篇
  1991年   37篇
  1990年   60篇
  1989年   29篇
  1988年   21篇
  1987年   42篇
  1986年   29篇
  1985年   34篇
  1984年   41篇
  1983年   33篇
  1982年   35篇
  1981年   61篇
  1980年   38篇
  1979年   25篇
  1978年   20篇
  1977年   24篇
  1976年   20篇
  1974年   17篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
171.
A seismic refraction study on old (110 Myr) lithosphere in the northwest Pacific Basin has placed constraints on crustal and uppermantle seismic structure of old oceanic lithosphere, and lithospheric aging processes. No significant lateral variation in structure other than azimuthally anisotropic mantle velocities was found, allowing the application of powerful amplitude modeling techniques. The anisotropy observed is in an opposite sense to that expected, suggesting the tectonic setting of the area may be more complex than originally thought. Upper crustal velocities are generally larger than for younger crust, supporting current theories of decreased porosity with crustal aging. However, there is no evidence for significant thickening of the oceanic crust with age, nor is there any evidence of a lower crustal layer of high or low velocity relative to the velocity of the rest of Layer 3. The compressional and shear wave velocities rule out a large component of serpentinization of mantle materials. The only evidence for a basal crustal layer of olivine gabbro cumulates is a 1.5 km thick Moho transition zone. In the slow direction of anisotropy, upper mantle velocities increase from 8.0 km s-1 to 8.35 km s-1 in the upper 15 km below the Moho. This increase is inconsistent with an homogeneous upper mantle and suggests that compositinal or phase changes occur near the Moho.  相似文献   
172.
This paper examines the mechanism controlling the short time-scale variation of sea ice cover over the Southern Ocean. Sea ice concentration and ice velocity datasets derived from images of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) are employed to reveal this mechanism. The contribution of both dynamic and thermodynamic processes to the change in ice edge location is examined by comparing the meridional velocity of ice edge displacement and sea ice drift. In the winter expansion phase, the thermodynamic process of new ice production off the ice edge plays an important role in daily advances of ice cover, whereas daily retreats are mostly due to southward ice drift. On the other hand, both advance and retreat of ice edges in the spring contraction phase are mostly caused by the dynamic process of the ice drift. Based on the above mechanism and the linear relation between the degree of ice production at the ice edge and northward wind speed, the seasonal advance of ice cover can be roughly reproduced using the meridional velocity of ice drift at the ice edge.  相似文献   
173.
Two distinct series of slumps deform the upper part of the sedimentary sequence along the continental margin of the Levant. One series is found along the base of the continental slope, where it overlies the disrupted eastern edge of the Messinian evaporites. The second series of slumps transects the continental margin from the shelf break to the Levant Basin. It seemed that the two series were triggered by two unrelated, though contemporaneous, processes. The shore-parallel slumps were initiated by basinwards flow of the Messinian salt, that carried along the overlying Plio-Quaternary sediments. Seawater that percolated along the detachment faults dissolved the underlying salt to form distinctly disrupted structures. The slope-normal slumps are located on top of large canyons that cut into the pre-Messinian sedimentary rocks. A layer of salt is found in the canyons, and the Plio-Quaternary sediments were deposited on that layer. The slumps are bounded by large, NW-trending faults where post-Messinian faulted offset was measured. We presume that the flow of the salt in the canyons also drives the slope-normal slumps. Thus thin-skinned halokynetic processes generated the composite post-Tortonian structural patterns of the Levant margin. The Phoenician Structures are a prime example of the collapse of a distal continental margin due to the dissolution of a massive salt layer.  相似文献   
174.
Geophysical data from 900 km of the Southwest Indian Ridge are used todescribe the pattern of evolution of the plate boundary between 61° Eand 70° E over the past 20 million years. The SWIR is anobliquely-opening, ultra slow-spreading axis, and east of61° E comprises a series of ridge sections, each about 100–120 kmin length. The orientation of these sections varies fromsub-orthogonal to oblique to the approximately N–S spreadingdirection. In general, the suborthogonal sections are shallower, commonlysubdivided into an array of discrete axial segments, and carry recognisablecentral magnetic anomalies. The majority of the oblique sections are single,continuous rifts without continuous axial magnetic signatures.Morphotectonics of the Southwest Indian Ridge crust have not previously beenwell constrained off-axis, and we here present sidescan sonar andswath bathymetric data up to 100 km from the ridge to demonstrate the complexities of its spatial and temporal evolution.A model is proposed that the segmentation style correlates with analong-axis variation between: (a) relatively thick crustal sections which overlie mantle sections with higher magmatic supply created in orthogonally-spreading segments and (b) those oblique sections associated with cooler, magmatically-starved mantle and thinner crust. These latter sections are formed at broad offset zones in theplate boundary, more precisely defined on faster-spreading ridges asnontransform discontinuities. The nonsystematic pattern of crustalconstruction, extensional basin formation and the absence of extension-parallel traces of discontinuities off-axis suggest that the oblique spreading sections are not fixed in space or time.  相似文献   
175.
176.
Seasonal evolution of surface mixed layer in the Northern Arabian Sea (NAS) between 17° N–20.5° N and 59° E-69° E was observed by using Argo float daily data for about 9 months, from April 2002 through December 2002. Results showed that during April - May mixed layer shoaled due to light winds, clear sky and intense solar insolation. Sea surface temperature (SST) rose by 2.3 °C and ocean gained an average of 99.8 Wm−2. Mixed layer reached maximum depth of about 71 m during June - September owing to strong winds and cloudy skies. Ocean gained abnormally low ∼18 Wm−2 and SST dropped by 3.4 °C. During the inter monsoon period, October, mixed layer shoaled and maintained a depth of 20 to 30 m. November - December was accompanied by moderate winds, dropping of SST by 1.5 °C and ocean lost an average of 52.5 Wm−2. Mixed layer deepened gradually reaching a maximum of 62 m in December. Analysis of surface fluxes and winds suggested that winds and fluxes are the dominating factors causing deepening of mixed layer during summer and winter monsoon periods respectively. Relatively high correlation between MLD, net heat flux and wind speed revealed that short term variability of MLD coincided well with short term variability of surface forcing.  相似文献   
177.
Spatial and Temporal Variations of Sound Speed at the PN Section   总被引:3,自引:0,他引:3  
Gridded sound speed data were calculated using Del Grosso's formulation from the temperature and salinity data at the PN section in the East China Sea covering 92 cruises between February 1978 and October 2000. The vertical gradients of sound speed are mainly related to the seasonal variations, and the strong horizontal gradients are mainly related to the Kuroshio and the upwelling. The standard deviations show that great variations of sound speed exist in the upper layer and in the slope zone. Empirical orthogonal function analysis shows that contributions of surface heating and the Kuroshio to sound speed variance are almost equivalent. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
178.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
179.
Four large-scale bathymetric maps of the Southern East Pacific Rise and its flanks between 15° S and 19° S display many of the unique features of this superfast spreading environment including abundant seamounts (the Rano Rahi Field), axial discontinuities, discontinuity migration, and abyssal hill variation. Along with a summary of the regional geology, these maps will provide a valuable reference for other sea-going programs on-and off-axis in this area, including the Mantle ELectromagnetic and Tomography (MELT) experiment.  相似文献   
180.
Hydrodynamic and sediment transport measurements from instrumentation deployed during a 54-day winter period at two sites on the Louisiana inner shelf are presented. Strong extratropical storms, with wind speeds of 7.8 to 15.1 m s-1, were the dominant forcing mechanism during the study. These typically caused mean oscillatory flows and shear velocities about 33% higher than fair weather (averaging 12.3 and 3.2 cm s-1 at the landward site, and 11.4 and 2.7 cm s-1 at the seaward site, respectively). These responses were coupled with mean near-bottom currents more than twice as strong as during fair weather (10.3 and 7.5 cm s-1 at the landward and seaward sites, respectively). These flowed in approximately the same direction as the veering wind, causing a net offshore transport of fine sand. Weak storms were responsible for little sediment transport whereas during fair weather, onshore sand transport of approximately 25-75% of the storm values appears to have occurred. This contradicts previous predictions of negligible fair-weather sediment movement on this inner shelf.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号