首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1993篇
  免费   60篇
  国内免费   15篇
测绘学   75篇
大气科学   149篇
地球物理   410篇
地质学   700篇
海洋学   148篇
天文学   350篇
综合类   8篇
自然地理   228篇
  2021年   18篇
  2020年   14篇
  2019年   20篇
  2018年   40篇
  2017年   45篇
  2016年   42篇
  2015年   27篇
  2014年   33篇
  2013年   96篇
  2012年   64篇
  2011年   68篇
  2010年   75篇
  2009年   80篇
  2008年   86篇
  2007年   80篇
  2006年   68篇
  2005年   60篇
  2004年   57篇
  2003年   59篇
  2002年   63篇
  2001年   41篇
  2000年   59篇
  1999年   38篇
  1998年   37篇
  1997年   28篇
  1996年   30篇
  1995年   31篇
  1994年   21篇
  1993年   28篇
  1992年   31篇
  1991年   21篇
  1990年   31篇
  1989年   27篇
  1988年   25篇
  1987年   22篇
  1986年   22篇
  1985年   26篇
  1984年   37篇
  1983年   44篇
  1982年   30篇
  1981年   29篇
  1980年   22篇
  1978年   16篇
  1977年   17篇
  1976年   16篇
  1975年   21篇
  1974年   14篇
  1973年   16篇
  1972年   22篇
  1971年   22篇
排序方式: 共有2068条查询结果,搜索用时 31 毫秒
61.
Results are presented for round one of a new international proficiency testing programme designed for microprobe laboratories involved in the routine analysis of silicate minerals. The sample used for this round was TB-1, a basaltic glass fused and prepared by the USGS. Thirty nine laboratories contributed data to this round, the majority of major element results being undertaken by EPMA and the majority of trace elements by LA-ICP-MS. Assigned values were derived from the median of results produced by nine selected laboratories that analysed powdered material by conventional ICP-MS, INAA and XRF techniques using bulk powders of the sample. Submitted microprobe results were evaluated using a target precision calculated using the Horwitz function, adopting the same criteria as those used for "applied" geochemistry laboratories in the companion GeoPT proficiency testing programme for laboratories involved in the routine bulk analysis of silicate rocks. An evaluation of results from participating microprobe laboratories indicated that overall, data were compatible with this precision function. A comparison between the performance of bulk and microprobe techniques used in the analysis of the basaltic glass showed remarkably good agreement, with significant bias only observed for the major oxide MgO.  相似文献   
62.
Palaeomagnetic study, carried out in the Moscovian (~305 Ma) formation in the Edjeleh anticline, shows the existence of three magnetisation components. Two of them are probably Cenozoic and Permian remagnetisations. The third component determined by both well defined ChRMs and remagnetisation circles analysis passes the fold test. Because the folding started before or during the Stephano-Autunian, this third component is the primary magnetisation. Its palaeomagnetic pole (28.3°S, 58.9°E), close to other poles from the Saharan platform obtained from neighbouring periods but without palaeomagnetic tests, confirms the age of these last data. To cite this article: B. Bayou et al., C. R. Geoscience 334 (2002) 81–87.  相似文献   
63.
The last British Ice Sheet: growth, maximum extent and deglaciation   总被引:2,自引:0,他引:2  
The growth, maximum lateral extent and deglaciation of the last British Ice Sheet (BIS) has been reconstructed using sediment, faunal and stable isotope methods from a sedimentary record recovered from the Barra Fan, north-west Scotland. During a phase of ice sheet expansion postdating the early "warmth" of Marine Isotope Stage 3 (MIS 3), ice rafting events, operating with a cyclicity of approximately 1500 years, are interspersed between warm, carbonate-rich interstadials operating with a strong Dansgaard-Oeschger (D-O) cyclicity. The data suggest that the BIS expanded westwards to the outer continental shelf break shortly after 30 Ky BP (before present) and remained there until about 15 Ky BP. Within MIS 2, as the ice sheet grew to its maximum extent, the pronounced periodicities which characterize MIS 3 are lost from the record. The exact timing of the Last Glacial Maximum is difficult to define in this record; but maxima in Neogloboquadrina pachyderma (sinistral) Ø18O are observed between 21-17 Ky BP. A massive discharge of ice-rafted detritus, coincident with Heinrich event 1, is observed at about 16 Ky BP. Deglaciation of the margin is complete by about 15 Ky BP and surface waters warm rapidly after this date.  相似文献   
64.
Submarine pyroclastic eruptions at depths greater than a few hundred meters are generally considered to be rare or absent because the pressure of the overlying water column is sufficient to suppress juvenile gas exsolution so that magmatic disruption and pyroclastic activity do not occur. Consideration of detailed models of the ascent and eruption of magma in a range of sea floor environments shows, however, that significant pyroclastic activity can occur even at depths in excess of 3000 m. In order to document and illustrate the full range of submarine eruption styles, we model several possible scenarios for the ascent and eruption of magma feeding submarine eruptions: (1) no gas exsolution; (2) gas exsolution but no magma disruption; (3) gas exsolution, magma disruption, and hawaiian-style fountaining; (4) volatile content builds up in the magma reservoir leading to hawaiian eruptions resulting from foam collapse; (5) magma volatile content insufficient to cause fragmentation normally but low rise speed results in strombolian activity; and (6) volatile content builds up in the top of a dike leading to vulcanian eruptions. We also examine the role of bulk-interaction steam explosivity and contact-surface steam explosivity as processes contributing to volcaniclastic formation in these environments. We concur with most earlier workers that for magma compositions typical of spreading centers and their vicinities, the most likely circumstance is the quiet effusion of magma with minor gas exsolution, and the production of somewhat vesicular pillow lavas or sheet flows, depending on effusion rate. The amounts by which magma would overshoot the vent in these types of eruptions would be insufficient to cause any magma disruption. The most likely mechanism of production of pyroclastic deposits in this environment is strombolian activity, due to the localized concentration of volatiles in magma that has a low rise rate; magmatic gas collects by bubble coalescence, and ascends in large isolated bubbles which disrupt the magma surface in the vent, producing localized blocks, bombs, and pyroclastic deposits. Another possible mode of occurrence of pyroclastic deposits results from vulcanian eruptions; these deposits, being characterized by the dominance of angular blocks of country rocks deposited in the vicinity of a crater, should be easily distinguishable from strombolian and hawaiian eruptions. However, we stress that a special case of the hawaiian eruption style is likely to occur in the submarine environment if magmatic gas buildup occurs in a magma reservoir by the upward drift of gas bubbles. In this case, a layer of foam will build up at the top of the reservoir in a sufficient concentration to exceed the volatile content necessary for disruption and hawaiian-style activity; the deposits and landforms are predicted to be somewhat different from those of a typical primary magmatic volatile-induced hawaiian eruption. Specifically, typical pyroclast sizes might be smaller; fountain heights may exceed those expected for the purely magmatic hawaiian case; cooling of descending pyroclasts would be more efficient, leading to different types of proximal deposits; and runout distances for density flows would be greater, potentially leading to submarine pyroclastic deposits surrounding vents out to distances of tens of meters to a kilometer. In addition, flows emerging after the evacuation of the foam layer would tend to be very depleted in volatiles, and thus extremely poor in vesicles relative to typical flows associated with hawaiian-style eruptions in the primary magmatic gas case. We examine several cases of reported submarine volcaniclastic deposits found at depths as great as 3000 m and conclude that submarine hawaiian and strombolian eruptions are much more common than previously suspected at mid-ocean ridges. Furthermore, the latter stages of development of volcanic edifices (seamounts) formed in submarine environments are excellent candidates for a wide range of submarine pyroclastic activity due not just to the effects of decreasing water depth, but also to: (1) the presence of a summit magma reservoir, which favors the buildup of magmatic foams (enhancing hawaiian-style activity) and episodic dike emplacement (which favors strombolian-style eruptions); and (2) the common occurrence of alkalic basalts, the CO2 contents of which favor submarine explosive eruptions at depths greater than tholeiitic basalts. These models and predictions can be tested with future sampling and analysis programs and we provide a checklist of key observations to help distinguish among the eruption styles.  相似文献   
65.
Statistical analysis of the magnetic fabric of samples from several successive lava flows emplaced under similar conditions can allow determination of the mean flow direction when magnetic fabric data from individual flows do not lead to reliable results. A difference between the obtained flow direction and the present dip direction indicates that the flows were tilted after emplacement. For 2 successive series of flows on the Jeanne d’Arc Peninsula presently NNW dipping, this method shows lava emplacement along a SSW–NNE direction. This indicates a gentle tilting acquired during a period of weak deformation in the whole archipelago. Additionally, the magnetic fabric data allow the reconstruction of the different conditions of emplacement of these two series of lava flows and of formation of the local thick conglomerate interbedded between these series.  相似文献   
66.
In an attempt to determine the helium and neon isotopic composition of the lower oceanic crust, we report new noble gas measurements on 11 million year old gabbros from Ocean Drilling Program site 735B in the Indian Ocean. The nine whole rock samples analyzed came from 20 to 500 m depth below the seafloor. Helium contents vary from 3.3×10−10 to 2.5×10−7 ccSTP/g by crushing and from 5.4×10−8 to 2.4×10−7 ccSTP/g by melting. 3He/4He ratios vary between 2.2 and 8.6 Ra by crushing and between 2.9 and 8.2 by melting. The highest R/Ra ratios are similar to the mean mid-ocean ridge basalt (MORB) ratio of 8±1. The lower values are attributed to radiogenic helium from in situ α-particle production during uranium and thorium decay. Neon isotopic ratios are similar to atmospheric ratios, reflecting a significant seawater circulation in the upper 500 m of exposed crust at this site. MORB-like neon, with elevated 20Ne/22Ne and 21Ne/22Ne ratios, was found in some high temperature steps of heating experiments, but with very small anomalies compared to air. These first results from the lower oceanic crust indicate that subducted lower oceanic crust has an atmospheric 20Ne/22Ne ratio. Most of this neon must be removed during the subduction process, if the ocean crust is to be recirculated in the upper mantle, otherwise this atmospheric neon will overwhelm the upper mantle neon budget. Similarly, the high (U+Th)/3He ratio of these crustal gabbros will generate very radiogenic 4He/3He ratios on a 100 Ma time scale, so lower oceanic crust cannot be recycled into either MORB or oceanic island basalt without some form of processing.  相似文献   
67.
Detailed soil erosion studies bene?t from the ability to quantify the magnitude of erosion over time scales appropriate to the process. An inventory balance for 7Be was used to calculate sediment erosion in a 30·73 m2 plot during a series of runoff‐producing thunderstorms occurring over three days at the Deep Loess Research Station in Treynor, Iowa, USA. The inventory balance included determination of the pre‐ and post‐storm 7Be inventories in the soil, the atmospheric in?ux of 7Be during the event, and pro?les of the 7Be activity in the soil following the atmospheric deposition. The erosion calculated in the plot using the 7Be inventory balance was 0·058 g cm?2, which is 23 per cent of the annual average erosion determined using 137Cs inventories. The calculated erosion from the mass balance is similar to the 0·059 g cm?2 of erosion estimated from the amount of sediment collected at the outlet of the 6 ha ?eld during the study period and the delivery ratio (0·64). The inventory balance of 7Be provides a new means for evaluating soil erosion over the time period most relevant to quantifying the prediction of erosion from runoff. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
68.
Petrological data provide a good record of the thermal structure of deeply eroded orogens, and, in principle, might be used to relate the metamorphic structure of an orogen to its deformational history. In this paper, we present two‐dimensional thermal modelling of various subduction models taking into account varying wedge geometry as well as variation of density and topography with metamorphic reactions. The models clearly show that rock type accreted in the wedge has important effects on the thermal regime of orogenic wedges. The thermal regime is dominated by radiogenic heat production. Material having high radioactive heat production, like the granodioritic upper crust, produces high temperature metamorphism (amphibolitic conditions). Material with low radioactive heat production results in low temperature metamorphism of greenschist or blueschist types depending on the thickness of the wedge. Application of this model to seemingly unrelated areas of the Central Alps (Lepontine Dome, Grisons) and Eastern Alps (Tauern Window) explains the coexistence and succession of distinct Barrovian and blueschist facies metamorphic conditions as the result of a single, continuous tectonic process in which the main difference is the composition of the incoming material in the orogenic wedge. Accretion of the European upper continental crust in the Lepontine and Tauern Domes produces Barrovian type metamorphism while accretion of oceanic sediments results in blueschist facies metamorphism in the Valaisan domain.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号