首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   4篇
  国内免费   5篇
测绘学   1篇
大气科学   10篇
地球物理   21篇
地质学   38篇
海洋学   21篇
天文学   11篇
自然地理   16篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   5篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   9篇
  2013年   6篇
  2012年   5篇
  2011年   14篇
  2010年   13篇
  2009年   6篇
  2008年   8篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1975年   1篇
  1971年   1篇
  1965年   1篇
排序方式: 共有118条查询结果,搜索用时 0 毫秒
101.
102.
Continental and marine sediments are composed of a mixture from different sources and are influenced by a variety of environmental factors and transport processes prior to deposition. For analysis and interpretation, these sources and processes are often challenging to disentangle. We show that end-member modelling of X-ray fluorescence (XRF) core-scanning data helps to overcome these challenges by unmixing different environmental signals from high-resolution sediment geochemical records. We apply this approach to a 100 m long lacustrine succession from Lake Towuti, Indonesia, to separate the regional climate and tectonic history from local ecological and diagenetic processes. The resulting six end-members (EMs) are interpreted to represent changes in ecological (EM1), climatic (EMs 2–4), tectonic (EM 5) and geomorphic (EM6) processes determining changes in sediment composition. Because end-member analysis allows for the tracking of transient and overlapping processes, climatic changes can be followed throughout the 100 m-long succession, suggesting alternating wet and dry periods in Central Sulawesi over long (several 100 000 years) time scales. We show that end-member analysis on elemental data sets offers a detailed and objective means to disentangle depositional processes in sedimentary successions resulting from varying tectonic and environmental factors involved in sediment formation and deposition.  相似文献   
103.
104.
Carbon subsurface concentration profiles in olivine single crystals from San Carlos, Arizona, and the Sergebet Island. Red Sea, containing total carbon between 60–180 wt.-ppm, were analyzed by means of the 12C(d. p)13C nuclear reaction and by x-ray induced photoelectron spectroscopy (XPS) in combination with acid etching and with Ar+ ion sputtering respectively, between 200–930 K. The (d, p) analysis reveals equilibrium subsurface C profiles extending 1–2 μm or more into the bulk. Their steepness is a function of temperature. Typical mean C concentrations at 300 K in the resolvable layers, 0–0.6, 0.6–1.2, and 1.2–1.8 μm. are 1.8, and 0.6 wt.-%, corresponding to enrichment factors over the mean bulk C concentration of the order of 100, 40 and 30 respectively. In the topmost atomic layers analyzed by XPS the carbon is enriched by a factor of the order of 1000, decreasing with increasing temperature. The results suggest that the carbon is in a truly dissolved state and highly mobile, subject to a reversible subsurface segregation. Most probably local lattice strain associated with the solute C species provide the driving force for this diffusional process. The C diffusion coefficient was determined from the (d, p) data below 300 K: D= 10?13 exp(?7.8/RT) [m2· sec?1; KJ · mole?1] and from XPS data between 450–925 K: D = 10?14 exp(-6/RT) [m2 · sec?1; KJ · mole?1] The estimated error of the preexponential factors is ± one order of magnitude, that of the activation energies ±3.5 and ±2 KJ mole?1 respectively.  相似文献   
105.
106.
Two pes imprints of a perissodactyl mammal constituting a single step of a trackway have recently been discovered in Oligocene Flysch deposits of the Barail Group in Manipur, India. The tridactyl, mesaxonic imprints (~7 cm in length) show strong similarities to footprints known from the Paleogene of China and can be attributed to a tapiroid, rhinocerotoid or equoid trackmaker. This is the first record of perissodactyl footprints from the Lower Oligocene of India and the first evidence of mammals in the Barail Group of the age. Remarkable is the occurrence in a marginal marine setting, whereas other known perissodactyl footprints from the Eocene–Oligocene in particular from North America, Europe and China come from fluvio-lacustrine strata.  相似文献   
107.
At the atmosphere simulation chamber SAPHIR in Jülich both Laser-Induced Fluorescence Spectroscopy (LIF) and Long-Path Differential Optical Laser Absorption Spectroscopy (DOAS) are operational for the detection of OH radicals at tropospheric levels. The two different spectroscopic techniques were compared within the controlled environment of SAPHIR based on all simultaneous measurements acquired in 2003 (13 days). Hydroxyl radicals were scavenged by added CO during four of these days in order to experimentally check the calculated precisions at the detection limit. LIF measurements have a higher precision (σ= 0.88×106 cm–3) and better time resolution (Δt = 60 s), but the DOAS method (σ= 1.24×106 cm–3, Δt = 135 s) is regarded as primary standard for comparisons because of its good accuracy. A high correlation coefficient of r = 0.95 was found for the whole data set highlighting the advantage of using a simulation chamber. The data set consists of two groups. The first one includes 3 days, where the LIF measurements yield (1 – 2) ×106 cm–3 higher OH concentrations than observed by the DOAS instrument. The experimental conditions during these days are characterized by increased NOx concentration and a small dynamic range in OH. Excellent agreement is found within the other group of 6 days. The regression to the combined data of this large group yields unity slope without a significant offset.  相似文献   
108.
109.
The sandstone peak‐forest landscape in Zhangjiajie UNESCO Global Geopark of Hunan Province, China, is characterized by >3000 vertical pillars and peak walls of up to 350 m height, representing a spectacular example of sandstone landform variety. Few studies have addressed the mechanisms and timescales of the longer‐term evolution of this landscape, and have focused on fluvial incision. We use in situ cosmogenic nuclides combined with GIS analysis to investigate the erosional processes contributing to the formation of pillars and peak‐forests, and discuss their relative roles in the formation and decay of the landscape. Model maximum‐limiting bedrock erosion rates are the highest along the narrow fluvial channels and valleys at the base of the sandstone pillars (~83–122 mm kyr?1), and lowest on the peak wall tops (~2.5 mm kyr?1). Erosion rates are highly variable and intermediate along vertical sandstone peak walls and pillars (~30 to 84 mm kyr?1). Catchment‐wide denudation rates from river sediment vary between ~26 and 96 mm kyr?1 and are generally consistent with vertical wall retreat rates. This highlights the importance of wall retreat for overall erosion in the sandstone peak‐forest. In combination with GIS‐derived erosional volumes, our results suggest that the peak‐forest formation in Zhangjiajie commenced in the Pliocene, and that the general evolution of the landscape followed our sequential refined model: (i) slow lowering rates following initial uplift; (ii) fast plateau dissection by headward knickpoint propagation along joints and faults followed by; (iii) increasing contribution of wall retreat in the well‐developed pillars and peak‐forests and a gradual decrease in overall denudation rates, leading to; (iv) the final consumption of pillars and peak‐forests. Our study provides an approach for quantifying the complex interplay between multiple geomorphic processes as required to assess the evolutionary pathways of other sandstone peak‐forest landscapes across the globe. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
110.
Drainage rejuvenation through headward migration of alluvial knickpoints is common in ephemeral semi‐arid streams, but has not yet been described for tropical rivers. In the Australian monsoon tropics (AMT), wet monsoon forests have an important ecological function, and are present along many alluvial valleys and springs within a eucalypt‐savanna dominated landscape. Using a combination of LiDAR, remote sensing and field evidence, we observe the ongoing destruction of wet monsoon forest through hydro‐geomorphic feedbacks, along with the headward retreat of an alluvial knickpoint at Wangi Creek in Litchfield National Park, Northern Territory. Due to the highly transmissive shallow aquifer along the lower Wangi Creek, this knickpoint retreat leads to a downstream drop in in‐channel water level, which in turn drives a decrease in the local groundwater table. The lowered groundwater level causes the shallow anabranches and formerly water saturated peaty floodplain soil to desiccate, which results in a reduction of vegetation density. The resulting dry surface conditions allow annual to bi‐annual high frequency low‐intensity fires to affect the monsoon forest, while wet rainforest upstream of the knickpoint remains intact. In this paper, we argue that such hydro‐geomorphic feedbacks may cause the initial destabilization of the forest, which then provides the necessary conditions for the impact of fire. This scenario thus challenges the prevalent view that fire is a first‐order control on the spatial extent of wet monsoonal rainforest in the study area, and provides a new and testable hypothesis for further studies in the AMT. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号