首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   11篇
  国内免费   11篇
测绘学   2篇
大气科学   26篇
地球物理   77篇
地质学   88篇
海洋学   21篇
天文学   37篇
自然地理   13篇
  2022年   3篇
  2021年   4篇
  2020年   11篇
  2019年   6篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   3篇
  2014年   5篇
  2013年   18篇
  2012年   9篇
  2011年   16篇
  2010年   7篇
  2009年   11篇
  2008年   7篇
  2007年   8篇
  2006年   4篇
  2005年   13篇
  2004年   5篇
  2003年   10篇
  2002年   4篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   2篇
  1983年   2篇
  1982年   6篇
  1980年   6篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1970年   3篇
  1964年   1篇
  1953年   1篇
  1938年   1篇
排序方式: 共有264条查询结果,搜索用时 0 毫秒
91.
An examination of the deeply incised Ediacaran Wonoka canyons in the Adelaide Geosyncline (most recently interpreted as subaerial valleys) demonstrates their submarine origin, and confirms them as some of the best examples of ancient outcropping submarine canyons in the world. The entire canyon-fill succession is interpreted to be of deep-water (below wave base) origin, consisting of calcareous shale and siltstone together with a variety of mass-flow deposits including turbidites, grain flows and debris flows. The canyon fill lacks definitive shallow-water structures (e.g. mud cracks, fenestral fabrics or wave ripples) at all stratigraphic levels. Canyon-lining carbonate crusts that have previously been interpreted as non-marine calcretes or tufas (and used to suggest a non-marine origin for the canyons) are argued to be of deep-water, marine, microbial origin. Extremely negative carbon isotope values from the canyon-fill and canyon-lining crusts have a primary marine origin. Previously interpreted deepening upward trends in the canyon fill (used as evidence of a subaerial erosion episode followed by drowning) are suggested to be fining upward trends, caused by the transition from canyon cutting to canyon filling, with the majority of the fill being of deep-water slope origin. The basal conglomeratic canyon-fill sediments represent the last vestiges of the high-energy, deep-water, canyon-erosion environment in which the incisions formed. A deep-water origin for the canyons is consistent with all previous stratigraphic observations of the Wonoka canyons, including the conspicuous lack of regional unconformities in the lower Wonoka Formation, and their emanation from the deep-water facies of the Wonoka Formation. A submarine canyon origin also removes the need for extreme (~ 1 km) relative sea level fluctuation and associated problems (i.e. an enclosed basin with Messinian-style evaporative drawdown or thermal uplift above a migrating mantle plume) required by the subaerial valley hypotheses.  相似文献   
92.
The Alaskar pipeline is a highly conducting anomaly extending 800 miles (1300 km) from about 62° to 69° geomagnetic latitude beneath the most active regions of the ionospheric electrojet current. The spectral behavior of the magnetic field from this current was analyzed using data from standard geomagnetic observatories to establish the predictable patterns of temporal and spatial changes for field pulsation periods between 5 min and 4 hr. Such behavior is presented in a series of tables, graphs and formulae. Using 2- and 3-layer models of the conducting earth, the induced electric fields associated with the geomagnetic changes were established. From the direct relationship of the current to the geomagnetic field variation patterns one can infer counterpart temporal and spatial characteristics of the pipeline current. The relationship of the field amplitudes to geomagnetic activity indices,A p, and the established occurrence of various levels ofA p over several solar cycles were employed to show that about half of the time the induced currents in the pipe would be under 1 A for the maximum response oscillatory periods near 1 hr. Such currents should be of minimal consequence in corrosion effects for even a section of the pipeline unprotected by sacrificial electrodes. Of greater interest was the result that the extreme surges of current should reach over one-hundred amperes in the pipeline during high activity.  相似文献   
93.
94.
Summary . Seismograms recorded at regional distances (2°–12°) are quite complicated due to the waveguide nature of the crust. Generalized ray theory can be used to model the body waves in this distance range but a very large number of rays is required. Here I present a series of approximations to streamline generalized ray theory for the waveguide problem. If a layer over a half-space is used for the structure, then the de Hoop contour for a given ray is most strongly dependent on the fastest velocity of any leg of the ray. This results in analytic approximations to locate the contour. Each ray has two body wave arrivals (a headwave and a reflected arrival) so the displacement response of the ray need only be evaluated at a few points in time about the two arrival times and interpolated in between. A change in structure (increasing crustal thickness or Pn velocity) most strongly affects the relative timing of the headwave and the reflected arrival, so it is possible to 'stretch' or 'squeeze' the waveform of a representative model to simulate a whole suite of models.
Also discussed is the applicability of a single layer over a half-space structure for modelling the observed regional distance waveforms for shallow earthquakes. At periods greater than a few seconds crustal layering can be replaced by a single layer having the appropriate average velocities. Lateral variations in crustal thickness with scale lengths of less than about 100 km can also be modelled with a simple horizontal layer of appropriate average thickness.  相似文献   
95.
Heat flow in the Sohm abyssal plain is measured to be 53 mW/m2 at an age of 163 Ma. This is 25% higher than predicted by conductive cooling models, even though the sediment-corrected basement depth of 6.5 km at this location is normal for its age. An analysis of existing heat flow, depth and geoid anomalies in the northwest Atlantic shows that there is little correlation between heat flow and depth throughout the entire region. Depth and geoid are clearly related to the Bermuda swell while the associated heat flow anomaly, once adjusted for variations with age, is limited to 5 mW/m2 and only decays to the south. This means that the Bermuda swell is probably not caused by extensive thermal reheating within the lithosphere, but instead by dynamic uplift at its lower boundary due to the convective upwelling of a mantle plume. The regionally high heat flow in the northwest Atlantic may be a thermal remanent of previous plumes which passed beneath this region early in its history. Therefore, depth and heat flow anomalies from this region cannot be used to provide constraints on steady-state parameters of the lithosphere, such as the presence or absence of a long-term boundary layer at its base.  相似文献   
96.
ABSTRACT

The AHI-FSA (Advanced Himawari Imager - Fire Surveillance Algorithm) is a recently developed algorithm designed to support wildfire surveillance and mapping using the geostationary Himawari-8 satellite. At present, the AHI-FSA algorithm has only been tested on a number of case study fires in Western Australia. Initial results demonstrate potential as a wildfire surveillance algorithm providing high frequency (every 10 minutes), multi-resolution fire-line detections. This paper intercompares AHI-FSA across the Northern Territory of Australia (1.4 million km2) over a ten-day period with the well-established fire products from LEO (Low Earth Orbiting) satellites: MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite). This paper also discusses the difficulties and solutions when comparing high temporal frequency fire products with existing low temporal resolution LEO satellite products. The results indicate that the multi-resolution approach developed for AHI-FSA is successful in mapping fire activity at 500?m. When compared to the MODIS, daily AHI-FSA omission error was only 7%. High temporal frequency data also results in AHI-FSA observing fires, at times, three hours before the MODIS overpass with much-enhanced detail on fire movement.  相似文献   
97.
Nonaqueous phase liquid (NAPL) is a long-term source of ground water contamination as the pollutant slowly partitions into the air and water phases. The objective of this work was to study the efficacy of aqueous surfactant solution to enhance the dissolution of a residual NAPL below the capillary fringe, hence reducing the time needed for aquifer restoration. An analytical technique was developed to measure the concentration of NAPL in a nonionic surfactant. Soil column experiments simulated conditions in the saturated soil where a NAPL may become trapped as a discontinuous immobile phase. Experimental results indicate that dissolution was a rate-limited process, approaching equilibrium concentrations after 24 hours. The relative permeability of the aqueous phase initially decreased as surfactant was injected, but increased over time as the saturation of residual NAPL was reduced through mass transfer into the surfactant-enhanced aqueous phase. These findings suggest that enhancing the aqueous phase with a nonionic surfactant may significantly enhance the in situ recovery or residual NAPL.  相似文献   
98.
In this paper,the WA teleconnection pattern of SST in the Atlantic during the cold season is confirmed.The resultsshow the WA pattern of atmosphere is linked to the SST pattern and relative higher frequencies account for most of theWA signal.The linked pair of atmosphere and ocean patterns might be mutually supportive and exhibit“quasi-annualcycle”.The possible explanation for the polarity reversal of WA pattern is also discussed.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号