首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   6篇
测绘学   1篇
大气科学   6篇
地球物理   41篇
地质学   29篇
海洋学   16篇
天文学   40篇
综合类   1篇
自然地理   16篇
  2022年   1篇
  2021年   2篇
  2019年   6篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2014年   3篇
  2013年   5篇
  2012年   7篇
  2011年   9篇
  2010年   14篇
  2009年   16篇
  2008年   7篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1989年   2篇
  1987年   2篇
  1986年   5篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1976年   1篇
  1971年   1篇
  1969年   1篇
  1965年   1篇
排序方式: 共有150条查询结果,搜索用时 18 毫秒
71.
The tectonic environment of Kyushu, Japan is affected both by the subduction of the Philippine Sea plate and by the extensional tectonics related to rifting of Okinawa Trough at the eastern margin of the Eurasia Plate. We found that the Sendai fault zone acts as a channel for concurrent eruption of oceanic island basalt (OIB)-type and island arc (IA)-type basaltic rocks, propagating west to east in the Sendai region of southern Kyushu. The location of the Sendai fault zone is likely to correspond to the left-lateral shear zone in southern Kyushu as inferred by GPS Earth Observation Network. A similar magmatic association is present in the Beppu–Shimabara (BS) graben system in central Kyushu. The associate magmas of OIB-type rocks in Kyushu can be classified into typical, EM II-like and their intermediate OIB-type magmas in addition to MORB-like OIB-type magma in 87Sr/86Sr–Nb/Y systematics. Typical OIB-type and intermediate OIB-type magmas are erupted within the Sendai fault zone and BS graben system, respectively. The former is characterized by highest Nb/Y but low 87Sr/86Sr similar to MORB-like OIB-type magma erupted in northern Kyushu and the latter has intermediate Nb/Y and 87Sr/86Sr between typical and EM II-like OIB-type magmas. Almost all the IA-type rocks within the Sendai fault zone are generated from parental IA-type magma in Kyushu and characterized by weak crustal assimilation, having the lowest 87Sr/86Sr similar to typical OIB-type magma but the highest 143Nd/144Nd of arc magmas in Kyushu. The ages of both types of basaltic rocks within the Sendai fault zone range from 1.6 to <0.01?Ma clearly younger than those of andesitic rocks on northern and southern outsides of the fault zone and become younger from west to east. Initial formation of the fault zone has been induced by the counterclockwise rotation of southern Kyushu during the last 2?Ma as well as the BS graben system. Kyushu has continued to be split into three parts by the Sendai fault zone and BS graben during the Quaternary; northern, central, and southern zones. Their initial formation ages are likely to be linked to the initial rifting age of the middle Okinawa Trough back-arc basin.  相似文献   
72.
Late Quaternary foraminifera assemblages have been examined in two sediment cores (MD179‐3296 and MD179‐3317) from cold seep areas in the eastern margin of the Japan Sea, off Joetsu, Niigata Prefecture. Foraminifera assemblages in core MD179‐3296, which was located at the center of a pockmark on the Umitake Spur, show no evidence of methane flux and, especially in its upper portion, share the same paleo‐environmental history as other free gas hydrate areas of the Japan Sea. In comparison, in the core MD179‐3317 at the center of a pockmark at Joetsu Knoll, foraminiferal distributions were strongly affected by methane activities and, in the main part of the core, were deposited under local conditions. Three horizons were identified in this core, which are characterized by the high abundance value of Thalmannammina parkerae and might be related to methane flux due to sea level fall especially through late marine isotope stage (MIS) 3 and MIS 2.  相似文献   
73.
We present a simple but effective small unmanned aerial vehicle design that is able to make high-resolution temperature and humidity measurements of the atmospheric boundary layer. The air model used is an adapted commercial design, and is able to carry all the instrumentation (barometer, temperature and humidity sensor, and datalogger) required for such measurements. It is fitted with an autopilot that controls the plane’s ascent and descent in a spiral to 1800 m above ground. We describe the results obtained on three different days when the plane, called Aerolemma-3, flew continuously throughout the day. Surface measurements of the sensible virtual heat flux made simultaneously allowed the calculation of all standard convective turbulence scales for the boundary layer, as well as a rigorous test of existing models for the entrainment flux at the top of the boundary layer, and for its growth. A novel approach to calculate the entrainment flux from the top-down, bottom-up model of Wynagaard and Brost is used. We also calculated temperature fluctuations by means of a spectral high-pass filter, and calculated their spectra. Although the time series are small, tapering proved ineffective in this case. The spectra from the untapered series displayed a consistent −5/3 behaviour, and from them it was possible to calculate a dimensionless dissipation function, which exhibited the expected similarity behaviour against boundary-layer bulk stability. The simplicity, ease of use and economy of such small aircraft make us optimistic about their usefulness in boundary-layer research.  相似文献   
74.
We estimate detailed three-dimensional seismic velocity structures in the subducting Pacific slab beneath Hokkaido, Japan, using a large number of arrival-time data from 6902 local earthquakes. A remarkable low-velocity layer with a thickness of ~ 10 km is imaged at the uppermost part of the slab and is interpreted as hydrated oceanic crust. The layer gradually disappears at depths of 70–80 km, suggesting the breakdown of hydrous minerals there. We find prominent low-velocity anomalies along the lower plane of the double seismic zone and above the aftershock area of the 1993 Kushiro-oki earthquake (M7.8). Since seismic velocities of unmetamorphosed peridotite are much higher than the observations, hydrous minerals are expected to exist in the lower plane as well as the hypocentral area of the 1993 earthquake. On the other hand, regions between the upper and lower planes, where seismic activity is not so high compared to the both planes, show relatively high velocities comparable to those of unmetamorphosed peridotite. Our observations suggest that intermediate-depth earthquakes occur mainly in regions with hydrous minerals, which support dehydration embrittlement hypothesis as a cause of earthquake in the subducting slab.  相似文献   
75.
The Izu-Bonin intra-oceanic arc with 20–35 km thick continental crust is being subducted under the Honshu, presumably since 17 Ma. Tomographic image clearly demonstrates that the whole Izu-Bonin arc is subducting under the Honshu arc. Geologic cross section and the thickness of continental crust do not support the accretion of thick crust in spite of the continued subduction over 17 Ma.  相似文献   
76.
We analyzed small repeating earthquakes recorded over a 13-year period and GPS data recorded over an 8-month period to estimate interplate quasi-static slip associated with the 2003 Tokachi-oki earthquake (M8.0) and the 2004 off-Kushiro earthquake (M7.1). The repeating-earthquake analysis revealed that the slip rate near the source region of the Tokachi-oki earthquake was relatively low (< 5 cm/year) prior to the earthquake; however, in the last 3 years leading up to the event, a minor acceleration in slip occurred upon the deeper extension of the coseismic slip area of the earthquake. Repeating-earthquake and GPS data indicate that large amounts of afterslip occurred around the rupture area following the earthquake; the afterslip mainly propagated to the east of the coseismic slip area. We also infer that the occurrence of the 2004 off-Kushiro earthquake, located about 100 km northeast of the epicenter of the Tokachi-oki earthquake, was advanced by the afterslip associated with the Tokachi-oki earthquake.  相似文献   
77.
The East Asian continental margin is underlain by stagnant slabs resulting from subduction of the Pacific plate from the east and the Philippine Sea plate from the south. We classify the upper mantle in this region into three major domains: (a) metasomatic–metamorphic factory (MMF), subduction zone magma factory (SZMF), and the ‘big mantle wedge’ (BMW). Whereas the convection pattern is anticlockwise in the MMF domain, it is predominantly clockwise in the SZMF and BMW, along a cross section from the south. Here we define the MMF as a small wedge corner which is driven by the subducting Pacific plate and dominated by H2O-rich fluids derived by dehydration reactions, and enriched in large ion lithophile elements (LILE) which cause the metasomatism. The SZMF is a zone intermediate between MMF and BMW domains and constitutes the main region of continental crust production by partial melting through wedge counter-corner flow. Large hydrous plume generated at about 200 km depth causes extensive reduction in viscosity and the smaller scale hydrous plumes between 60 km and 200 km also bring about an overall reduction in the viscosity of SZMF. More fertile and high temperature peridotites are supplied from the entrance to this domain. The domain extends obliquely to the volcanic front and then swings back to the deep mantle together with the subducting slab. The BMW occupies the major portion of upper mantle in the western Pacific and convects largely with a clockwise sense removing the eastern trench oceanward. Sporadic formation of hydrous plume at the depth of around 410 km and the curtain flow adjacent to the trench cause back arc spreading. We envisage that the heat source in BMW could be the accumulated TTG (tonalite–trondhjemite–granodiorite) crust on the bottom of the mantle transition zone. The ongoing process of transportation of granitic crust into the mantle transition zone is evident from the deep subduction of five intra-oceanic arcs on the subducting Philippine Sea plate from the south, in addition to the sediment trapped subduction by the Pacific plate and Philippine Sea plate. The dynamics of MMF, SZMF and BMW domains are controlled by the angle of subduction; a wide zone of MMF in SW Japan is caused by shallow angle subduction of the Philippine Sea plate and the markedly small MMF domain in the Mariana trench is due to the high angle subduction of Pacific plate. The domains in NE Japan and Kyushu region are intermediate between these two. During the Tertiary, a series of marginal basins were formed because of the nearly 2000 km northward shift of the subduction zone along the southern margin of Tethyan Asia, which may be related to the collision of India with Asia and the indentation. The volume of upper mantle under Asia was reduced extensively on the southern margin with a resultant oceanward trench retreat along the eastern margin of Asia, leading to the formation of a series of marginal basins. The western Pacific domain in general is characterized by double-sided subduction; from the east by the oldest Pacific plate and from the south by the oldest Indo-Australian plate. The old plates are hence hydrated extensively even in their central domains and therefore of low temperature. The cracks have allowed the transport of water into the deeper portions of the slab and these domains supply hydrous fluids even to the bottom of the upper mantle. Thus, a fluid dominated upper mantle in the western Pacific drives a number of microplates and promote the plate boundary processes.  相似文献   
78.
A shallow M6.4 inland earthquake occurred on 26 July 2003 in the northern part of Miyagi Prefecture, northeastern Japan. This earthquake was a typical inland thrust earthquake, a type that is common in NE Japan. We obtained a detailed seismic velocity structure in the focal area of this earthquake by the double-difference tomography method. Arrival-time data came from temporary seismic stations deployed above the mainshock fault plane. Both the P-wave and S-wave velocities in the hanging wall were lower than those in the footwall. Aftershocks were aligned along a zone where the seismic velocity changes rapidly. This is consistent with the interpretation that the 2003 northern Miyagi earthquake occurred along a fault that acted as a normal fault in the Miocene and has been reactivated as a reverse fault under the present compressional stress regime. The large slip area by the main shock rupture (asperity) corresponds to an area with relatively high P- and S-wave velocities. A zone with low Vp/Vs was detected along the aftershock area. One of the possible causes of this low-Vp/Vs zone is the existence of high-aspect-ratio pores that contain water. Hypocenters of the main shock, largest foreshock, and largest aftershock are also located within the low-Vp/Vs zone.  相似文献   
79.
The light-saturated maximum value (P B max) and initial slope (α) of the photosynthesis-irradiance (P-E) curve were examined in a warm streamer, a cold streamer and a warm core ring off the Sanriku area in the subarctic western North Pacific Ocean during an ADEOS/OCTS Sanriku field campaign in early May 1997. BothP B max and α were within the ranges of temperate populations. A regional difference was apparent inP B max: populations in the warm streamer tended to show higher value ranging between 1.92 and 4.74 mgC (mgChla)−1h−1 than those in the cold streamer and the warm core ring (1.35–2.87 mgC (mgChla)−1h−1). A depth variation was also observed in α in both the warm streamer and the warm core ring: shallow populations tended to have lower α than deep populations. The depth variations in bothP B max and α resulted in a lower light intensity of the light saturation in a deeper population than that of a shallower one. These depth-related variations in the P-E parameters were likely a manifestation of “shade-adaptation” of photosynthesis. Photoinhibition was not observed over in situ surface light intensity varying below ca 1600 μmol photon m−2s−1. Water-column primary productivity was biooptically estimated to be 233 to 949 mgC m−2d−1 using vertical distributions of the P-E parameters, chlorophylla, phytoplankton light absorption and underwater irradiance. Applicability of surface data sets for estimation of water-column productivity is discussed.  相似文献   
80.
Lower Cretaceous lacustrine oil shales are widely distributed in southeastern Mongolia. Due to the high organic carbon content of oil shale, many geochemical studies and petroleum exploration have been conducted. Although most of the oil shales are considered to be Early Cretaceous in age, a recent study reveals that some were deposited in the Middle Jurassic. The present study aims at establishing depositional ages and characteristics of the Jurassic and Cretaceous lacustrine deposits in Mongolia. The Lower Cretaceous Shinekhudag Formation is about 250 m thick and composed of alternating beds of shale and dolomite. The Middle Jurassic Eedemt Formation is about 150 m thick and composed of alternating beds of shale, dolomitic marl, and siltstone. The alternations of shale and dolomite in both formations were formed by lake level changes, reflecting precipitation changes. Shales were deposited in the center of a deep lake during highstand, while dolomites were formed by primary precipitation during lowstand. Based on the radiometric age dating, the Shinekhudag Formation was deposited between 123.8 ±2.0 Ma and 118.5 ±0.9 Ma of the early Aptian. The Eedemt Formation was deposited at around 165–158 Ma of Callovian–Oxfordian. The calculated sedimentation rate of the Shinekhudag Formation is between 4.7 ±2.6 cm/ky and 10.0 ±7.6 cm/ky. Shales in the Shinekhudag Formation show micrometer‐scale lamination, consisting of algal organic matter and detrital clay mineral couplets. Given the average thickness of micro‐laminae and calculated sedimentation rate, the micro‐lamination is most likely of varve origin. Both Middle–Upper Jurassic and Lower Cretaceous lacustrine oil shales were deposited in intracontinental basins in the paleo‐Asian continent. Tectonic processes and basin evolution basically controlled the deposition of these oil shales. In addition, enhanced precipitation under humid climate during the early Aptian and the Callovian–Oxfordian was another key factor inducing the widespread oil shale deposition in Mongolia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号