In this study, the relationship between the hourly changes of the ionospheric critic frequency values of F2 layers in low latitudes and geomagnetic activity is examined by using statistical methods. The ionospheric critical frequency data has been taken from the Manila (121.1° E, 14.7° N) ionosonde station. In order to investigate the effect of sun activity on ionospheric critical frequency, the data of 1981 when the sun was active and of 1985 when the sun was less active has been used. According to the Granger causality test results, on 5 % significance level, a causality relationship from disturbance storm time (Dst) index values to ionospheric critical frequency values direction has been observed. However, a causality relationship from ionospheric critical frequency values to Dst values has not been observed. From the results of cause-and-effect analysis, it is evaluated that the effect of a shockwave occurring in geomagnetic activity on ionospheric critical frequency continues along 72 h, that is, geomagnetic activity has a long-term effect on ionospheric critical frequency. The response of ionospheric critical frequency to geomagnetic activity substantially depends on seasons. This response is more observed especially in equinox period when the sun is active and in winter months. The increase in geomagnetic activity causes ionospheric critical frequency to decrease in night hours and increase in day hours. The same relationship has not been observed exactly, though observed very little in winter months, for 1985 when the sun was less active. 相似文献
Object-based image analysis (OBIA) has attained great importance for the delineation of landscape features, particularly with the accessibility to satellite images with high spatial resolution acquired by recent sensors. Statistical parametric classifiers have become ineffective mainly due to their assumption of normal distribution, vast increase in the dimensions of the data and availability of limited ground sample data. Despite pixel-based approaches, OBIA takes semantic information of extracted image objects into consideration, and thus provides more comprehensive image analysis. In this study, Indian Pines hyperspectral data set, which was recorded by the AVIRIS hyperspectral sensor, was used to analyse the effects of high dimensional data with limited ground reference data. To avoid the dimensionality curse, principal component analysis (PCA) and feature selection based on Jeffries–Matusita (JM) distance were utilized. First 19 principal components representing 98.5% of the image were selected using the PCA technique whilst 30 spectral bands of the image were determined using JM distance. Nearest neighbour (NN) and random forest (RF) classifiers were employed to test the performances of pixel- and object-based classification using conventional accuracy metrics. It was found that object-based approach outperformed the traditional pixel-based approach for all cases (up to 18% improvement). Also, the RF classifier produced significantly more accurate results (up to 10%) than the NN classifier. 相似文献
We present CCD BV and JHKs 2MASS photometric data for the open cluster NGC 1513. We observed 609 stars in the direction of the cluster up to a limiting
magnitude of V∼19 mag. The star-count method showed that the centre of the cluster lies at α2000=04h09m36s, δ2000=49°28′43″ and its angular size is r=10 arcmin. The optical and near-infrared two-colour diagrams revealed the colour excesses in the direction of the cluster
as E(B−V)=0.68±0.06, E(J−H)=0.21±0.02 and E(J−Ks)=0.33±0.04 mag. These results are consistent with normal interstellar extinction values. Optical and near-infrared Zero Age
Main-Sequences (ZAMS) provided an average distance modulus of (m−M)0=10.80±0.13 mag, which can be translated into a distance of 1440±80 pc. Finally, using Padova isochrones we determined the
metallicity and age of the cluster as Z=0.015±0.004 ([M/H]=−0.10±0.10 dex) and log (t/yr)=8.40±0.04, respectively. 相似文献
The necessity of estimating the degree and spatial extent of positive impacts with regard to protecting communities and properties
through potential flood control projects can be considered one of the main reasons for performing flood modeling. This paper
presents an overall systematic approach based on the simulation of some extreme event conditions, using a hydrological model
to generate the resulting river flows and then using a hydraulic modeling exercise to decide upon floodplain evolution in
the case-study area, Bostanli river basin, which has been under the threat of flooding for many years. The potential serviceability
of the planned Bostanli Dam in the study area was examined by using the HEC-HMS and HEC-RAS modeling tools, both integrated
with GIS functions for spatial operations. The results indicate that the dam construction as planned would have a somewhat
positive impact as a potential flood control measure, since it seems to decrease the flood peaks of 68.9 and 158.7 m3/s (that would potentially be generated by 100- and 500-year storm events under current conditions) to 65.5 and 150.7 m3/s (when the dam is in operation), respectively. However, this seems to contribute little to the overall flood mitigation
performance in the basin. 相似文献
This paper presents a coupled thermo-mechanical model to investigate the ground response during underground coal gasification (UCG). The model incorporated the temporal and spatial development of temperature, the gradual growth of the cavity, and temperature-dependent material properties. Model verification was made against two benchmarks to acquire the confidence for the predictive purpose. The first exercise demonstrated the correctness of the model implemented in COMPASS. The second exercise showed that using the ash-filled cavity to represent null or empty zones is a good option in the numerical modeling and provided highly comparable results to other models. Based on the Hanna UCG trial, different cases were simulated to investigate the effects of the cavity size in the coal seam and the thermal expansion coefficient of the caprock and base rock on key features that take place during the process of UCG. A maximum temperature in the range of 1200–1500 ℃ was induced by the gasification of coal, and a cavity with a maximum length of 13.5 m was formed after 30 days of simulation. Meanwhile, small vertical displacement in the range of -5–12 mm took place near the cavity because of the thermal expansion of the geologic materials and the reduction of the overall weight with the creation of the cavity. In addition, it was found the thermal expansion coefficients can influence the thermo-mechanical response of geologic materials, but the effects were insignificant when its order of magnitude was smaller than 10-6 K-1. 相似文献
This study was performed at an area of 50?×?48 m2 being defined as a new settlement in the northeast of Sivas. In the study, the discontinuities that are not deep and their geophysical characteristics were examined by the GPR and MASW methods. For interpretation, GPR cross sections were prepared as 2D–3D, and MASW cross sections were prepared as 2D. As for geophysical cross sections, about 10 m depth was examined. It was understood that the reflections observed in the form of hyperbolas in GPR cross sections correspond to areas having low S wave velocity (Vs) in MASW cross sections. It was understood that the S wave velocities are lower than 653 m/s, that the seismic velocities in between 653 and 275 m/s indicate partially deteriorated areas and that the S wave velocities of unweathered gypsums are higher than 1275 m/s at these low-velocity zones. Thus, it was thought that the fill material that may arise in the fracture, crack and deterioration areas arises from intercalation and clastic gypsum units, and that it plays a role in having low value S wave velocities. In all the geophysical cross sections, it was understood that the structures with gypsum are intense at the initial 5 m. And a fracture at the south of the study area, that it was estimated might be longer than 40 m, was determined as the largest gypsum structure. It was understood that this fracture starts from a depth of about 5 m in the west and that it slopes down to 7 m depth in the east. According to these results, it was understood that the damage amount arising in time in the gypsum structures from the effect of water may increase, the study area was defined as risky, and the required importance should be attached to these structures especially in foundation engineering. 相似文献
In the context of major outcomes of a steadily changing climate, extreme climatic conditions and the associated events in various forms of weather-related natural disasters, e.g. droughts, floods, and heat waves, are more frequently experienced on the global scale in recent years. In support of this argument, there are adequate numbers of explicit signals over such a persistent outlook, which is greatly illustrated by historical data and observations. This study, which is mainly oriented to investigating the drought behaviour in Thracian, Aegean and Mediterranean transects of Turkey's major river basins, is actually inspired by the foreseen potential of using annual maximum drought severity series (based on drought definition through the standardized precipitation index (SPI)) within a framework that resembles the use of flood discharge directly from flow measurements in a river basin. To this end, a series of spatial analyses were employed to identify different aspects of flood appearance in the study extent, including trend views on annual average drought severity series, shifts in the starting time of the annually most severe flood periods, and changes in spatial coverage views of average drought conditions under different drought severity categories. The framework of the analytical approaches depends greatly on validated international datasets and open-source computational algorithms. The results from the analyses that were conducted in two consecutive periods of 1958–1980 and 1981–2004 revealed that Turkey's western and southern river basin systems seemed to have experienced quite different behaviours between the two periods in terms of drought severity magnitudes, drought durations and annual occurrence times.
A conceptual model with water samples from ten geothermal fields (?smil, Ilg?n (Çavu?cugöl), Tuzlukçu-Ak?ehir, Seydi?ehir and Kavakköy, Hüyük, Ere?li-Akhüyük, Kad?nhan?, Cihanbeyli, Karap?nar and Bey?ehir) in the province of Konya defined the geothermal system. Carbonates, quartzite and marbles of Paleozoic metamorphics are the reservoir rocks and the heating sources are igneous rock intrusions and geothermal gradient. The variable thermal water (CaMgHCO3, CaSO4, NaSO4, CaHCO3, CaNaHCO3, NaCl and CaNaClHCO3) had EC and temperature between 177.8 and 56,100 μS/cm and between 18.3 and 44 °C, respectively. Ca2+ in geothermal fluids are associated with marble and carbonate rocks and the high chloride shows direct connection with deep geothermal system, and prolonged contact with evaporite rocks. Sulphate originates from dissolution of and oxidation of sulphate and sulphur-bearing minerals. The high As, B, F and Mn concentration in some thermal water samples were determined as 85 μg/l, 148.56 mg/l, 3.01 mg/l and 208.13 mg/l, respectively. Reservoir temperatures computed by Na/K geothermometers were between 85.37–158.89 °C for Ak?ehir thermal waters and 58.78–90.45 °C for Ere?li thermal waters. The maximum reservoir temperature of other geothermal waters was 75 °C by the silica geothermometers. 相似文献
Active faults aligning in NW–SE direction and forming flower structures of strike-slip faults were observed in shallow seismic data from the shelf offshore of Avc?lar in the northern Marmara Sea. By following the parallel drainage pattern and scarps, these faults were traced as NW–SE-directed lineaments in the morphology of the northern onshore sector of the Marmara Sea (eastern Thrace Peninsula). Right-lateral displacements in two watersheds of drainage and on the coast of the Marmara Sea and Black Sea are associated with these lineaments. This right-lateral displacement along the course of these faults suggests a new, active strike-slip fault zone located at the NW extension of the northern boundary fault of the Ç?narc?k Basin in the Marmara Sea. This new fault zone is interpreted as the NW extension of the northern branch of the North Anatolian Fault Zone (NAFZ), extending from the Ç?narc?k Basin of the Marmara Sea to the Black Sea coast of the Thrace Peninsula, and passing through B üy ük çekmece and K ü ç ük çekmece lagoons. These data suggest that the rupture of the 17 August 1999 earthquake in the NAFZ may have extended through Avc?lar. Indeed, Avc?lar and ?zmit, both located on the Marmara Sea coast along the rupture route, were strongly struck by the earthquake whereas the settlements between Avc?lar and ?zmit were much less affected. Therefore, this interpretation can explain the extraordinary damage in Avc?lar, based on the newly discovered rupture of the NAFZ in the Marmara Sea. However, this suggestion needs to be confirmed by further seismological studies. 相似文献