全文获取类型
收费全文 | 69篇 |
免费 | 0篇 |
专业分类
大气科学 | 3篇 |
地球物理 | 32篇 |
地质学 | 12篇 |
海洋学 | 4篇 |
天文学 | 16篇 |
自然地理 | 2篇 |
出版年
2015年 | 1篇 |
2012年 | 2篇 |
2011年 | 2篇 |
2009年 | 3篇 |
2008年 | 1篇 |
2007年 | 5篇 |
2006年 | 4篇 |
2005年 | 2篇 |
2004年 | 1篇 |
2003年 | 1篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 5篇 |
1996年 | 2篇 |
1995年 | 3篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 3篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 4篇 |
1978年 | 3篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有69条查询结果,搜索用时 31 毫秒
51.
C. Lacasse H. Sigurdsson H. Jóhannesson M. Paterne S. Carey 《Bulletin of Volcanology》1995,57(1):18-32
Geochemical evidence shows that the silicic component of the widespread Ash Zone 1 in the North Atlantic is derived from a major ignimbrite-forming eruption which occurred at the Katla caldera in southern Iceland during the transition from glacial to interglacial conditions in Younger Dryas time. Both trace and major element evidence of the rhyolitic products excludes the Öræfajökull volcano as a source. The high-Ti basaltic component in the marine ash zone can also be attributed to contemporaneous eruption in the Katla volcanic complex. Dispersal of tephra from this event is primarily attributed to the generation of co-ignimbrite ash columns in the atmosphere, with ash fallout on both sea ice and on the ocean floor north and east of Iceland. Owing to the changing ocean circulation characteristics of the glacial regime, including suppression of the Irminger Current and a stronger North Atlantic Current, tephra was rafted on sea ice south into the central North Atlantic and deposited as dispersed Ash Zone 1. Sediments south of Iceland also show evidence of the formation of ash turbidites, generated either by the entrance of pyroclastic flows into the sea, or during discharge of jökulhlaups or glacier bursts from this subglacial eruption. 相似文献
52.
The Small Unmanned Meteorological Observer SUMO: Recent developments and applications of a micro-UAS for atmospheric boundary layer research 总被引:1,自引:0,他引:1
During the last 5 years, the Small Unmanned Meteorological Observer SUMO has been developed as a flexible tool for atmospheric boundary layer (ABL) research to be operated as sounding system for the lowest 4 km of the atmosphere. Recently two main technical improvements have been accomplished. The integration of an inertial measurement unit (IMU) into the Paparazzi autopilot system has expanded the environmental conditions for SUMO operation. The implementation of a 5-hole probe for determining the 3D flow vector with 100 Hz resolution and a faster temperature sensor has enhanced the measurement capabilities. 相似文献
53.
Nicole Metrich Haraldur Sigurdsson Peter S. Meyer Joseph D. Devine 《Contributions to Mineralogy and Petrology》1991,107(4):435-447
About 12.3 km3 of basaltic magma were erupted from the Lakagigar fissure in Iceland in 1783, which may have been derived from the high-level reservoir of Grimsvotn central volcano, by lateral flow within the rifted crust. We have studied the petrology of quenched, glassy tephra from sections through pyroclastic cones along the fissure. The chemical composition of matrix glass of the 1783 tephra is heterogeneous and ranges from olivine tholeiite to Fe–Ti rich basalt, but the most common magma erupted is quartz tholeiite (Mg#43.6 to 37.2). The tephra are characterized by low crystal content (5 to 9 vol%). Glass inclusions trapped in plagioclase and Fo86 to Fo75 olivine phenocrysts show a large range of compositions, from primitive olivine tholeiite (Mg#64.3), quartz tholeiite (Mg#43–37), to Fe–Ti basalts (Mg#33.5) which represent the most differentiated liquids and are trapped as rare melt inclusions in clinopyroxene. Both matrix glass and melt inclusion data indicate a chemically heterogeneous magma reservoir, with quartz tholeiite dominant. LREE-depleted olivine-tholeiite melt-inclusions in Mg-rich olivine and anorthitic-plagioclase phenocrysts may represent primitive magma batches ascending into the reservoir at the time of the eruption. Vesicularity of matrix glasses correlates with differentiation, ranging from 10 to 60 vol.% in evolved quartz-tholeiite glasses, whereas olivine-tholeiite glasses contain less than 10 vol.% vesicles. FTIR analyses of olivine-tholeiite melt-inclusions indicate concentrations of 0.47 wt% H2O and 430 to 510 ppm for CO2. Chlorine in glass inclusions and matrix glasses increases from 50 ppm in primitive tholeiite to 230 ppm in Fe–Ti basalts, without clear evidence of degassing. Melt inclusion analyses show that sulfur varies from 915 ppm to 1970 ppm, as total FeO* increases from 9 to 13.5 wt%. Sulfur degassing correlates both with vesicularity and magma composition. Thus sulfur in matrix glasses decreases from 1490 ppm to 500 ppm, as Mg # decreases from 47 to 37 and vesicularity of the magma strongly increases. These results indicate loss of at least 75% of sulfur during the eruption. The correlation of low sulfur content in matrix glasses with high vesicularity is regarded as evidence of the control of a major exsolving volatile phase on the degassing efficiency of the magma. Our model is consistent a quasi-permanent CO2 flux through the shallow-level magmatic reservoir of Grimsvotn. Following magma withdrawal from the reservoir and during eruption from the Lakagigar fissure, sulfur degassing was controlled by inherent CO2-induced vesicularity of the magma. 相似文献
54.
55.
E. Uchupi W. C. Schwab R. D. Ballard J. L. Cheminee J. Francheteau R. Hekinian D. K. Blackman H. Sigurdsson 《Geo-Marine Letters》1988,8(3):131-138
Still photographs and video images collected along the Neovolcanic Zone of the East Pacific Rise from 10°15′N to 11°53′N show
that recent volcanic sheet flows, possibly less than 100 years old, are superimposed on an older sediment-laden pillow terrane.
This recent activity is restricted to a narrow zone that crosses two topographic highs at 10°55′N and 11°26′N and diminishes
along-axis away from these highs. The association of recent sheet flows with older flows and collapse structures on the overlapping
spreading centers at 11°45′N supports the evolutionary model for the occurrence and evolution of overlapping spreading centers
by MacDonald and others (1986, 1988). 相似文献
56.
Geochemistry of the Lesser Antilles volcanic island arc 总被引:1,自引:0,他引:1
G.M Brown J.G Holland H Sigurdsson J.F Tomblin R.J Arculus 《Geochimica et cosmochimica acta》1977,41(6):785-801
New analyses of 1518 rocks for major and certain trace elements are used to examine chemical variations between the 15 larger volcanic islands of the Lesser Antilles island arc. The depth to the top of the subduction zone dipping westward at about 40° lies about 100km below all the volcanoes of the arc. Most of the sampled eruptions are post-Miocene (5-1 m.y.) although south of Martinique, the Oligocene-Miocene and the younger arc are superimposed.There is a chemical variation along the arc axis, from alkalic (southern) through calc-alkalic (central) to tholeiitic (northern) volcanic suites. Three islands are examined in detail as type examples of this variation, i.e. Grenada (south), Dominica (centre), and St. Kitts (north). The Grenada suite includes basanites, alkalic basalts, and subalkalic basalts, andesites and dacites. The subalkalic basalts, andesites and dacites each fall into three chemical groupings along the axis of the arc, distinguished especially by K, Zr, Ni and Cr abundances. The whole Lesser Antilles assemblage is characterised by low K abundances and low K/Rb ratios, compared with other island arcs.The magmas are believed to have evolved through processes of partial melting and crystal fractionation. Partial melting of garnet Iherzolite at about 100km depth in a relatively ‘fertile’ zone of upper mantle in the southern sector, above the subducted slab of basaltic ocean crust, could have produced the undersaturated alkalic magmas. In the central and northern sectors, where the crustal structures are more complex, partial melting may have occurred within more ‘barren’ upper mantle, to produce tholeiitic and calc-alkalic magmas depleted in certain trace elements. In either case, water was probably added to the melted zone from the subducted and hydrated oceanic crust, since the whole arc assemblage was erupted explosively and the rocks are rich in A12O3, plagioclase is very calcic, and amphibole is an important phase. The second process was crystal fractionation at low pressure, as evidenced by the abundance of cumulate xenoliths. Separating phases for the southern volcanoes were olivine, calcic augite and Cr-spinel, followed by hornblende, anorthite and Ti-magnetite at lower temperatures. There is little evidence of the higher-temperature fractionation controls for the central and northern volcanoes. 相似文献
57.
Basílio X. Santiago Rebecca A. W. Elson Steinn Sigurdsson & Gerard F. Gilmore 《Monthly notices of the Royal Astronomical Society》1998,295(4):860-868
We present V and I photometry of two open clusters in the LMC down to V ∼26. The clusters were imaged with the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope ( HST ), as part of the Medium Deep Survey Key Project. Both are low-luminosity ( MV ∼−3.5), low-mass ( M ∼103 M⊙) systems. The chance discovery of these two clusters in two parallel WFPC2 fields suggests a significant incompleteness in the LMC cluster census near the bar. One of the clusters is roughly elliptical and compact, with a steep light profile, a central surface brightness μ V (0)∼20.2 mag arcsec−2 , a half-light radius r hl ∼0.9 pc (total visual major diameter D ∼3 pc) and an estimated mass M ∼1500 M⊙. From the colour–magnitude diagram and isochrone fits we estimate its age as τ∼(2–5)×108 yr. Its mass function has a fitted slope of Γ=Δlogφ( M )/Δlog M =−1.8±0.7 in the range probed (0.9≲ M /M⊙≲4.5). The other cluster is more irregular and sparse, having shallower density and surface brightness profiles. We obtain Γ=−1.2±0.4, and estimate its mass as M ∼400 M⊙. A derived upper limit for its age is τ≲5×108 yr. Both clusters have mass functions with slopes similar to that of R136, a massive LMC cluster, for which HST results indicate Γ∼−1.2. They also seem to be relaxed in their cores and well contained in their tidal radii. 相似文献
58.
M. Mapelli E. Ripamonti G. Battaglia E. Tolstoy M. J. Irwin B. Moore S. Sigurdsson 《Monthly notices of the Royal Astronomical Society》2009,396(3):1771-1782
The existence of blue straggler stars (BSSs) in dwarf spheroidal galaxies (dSphs) is still an open question. In fact, many BSS candidates have been observed in the Local Group dSphs, but it is unclear whether they are real BSSs or young stars. Shedding light on the nature of these BSS candidates is crucial in order to understand the star formation history of dSphs. In this paper, we consider BSS candidates in Sculptor and Fornax. In Fornax, there are strong hints that the BSS population is contaminated by young stars, whereas in Sculptor there is no clear evidence of recent star formation. We derive the radial and luminosity distribution of BSS candidates from wide field imaging data extending beyond the nominal tidal radius of these galaxies. The observations are compared with the radial distribution of BSSs expected from dynamical simulations. In Sculptor, the radial distribution of BSS candidates is consistent with that of red horizontal branch (RHB) stars and is in agreement with theoretical expectations for BSSs generated via mass transfer in binaries. On the contrary, in Fornax, the radial distribution of BSS candidates is more concentrated than that of all the considered stellar populations. This result supports the hypothesis that most of BSS candidates in Fornax are young stars, and this is consistent with previous studies. 相似文献
59.
In 1874 and 1875 the fissure swarm of Askja central volcano was activated during a major rifting episode. This rifting resulted in a fissure eruption of 0.3 km3 basaltic magma in Sveinagja graben, 50 to 70 km north of Askja and subsequent caldera collapse forming the Oskjuvatn caldera within the main Askja caldera. Five weeks after initial collapse, an explosive mixed magma eruption took place in Askja. On the basis of matching chemistry, synchronous activity and parallels with other rifted central volcanoes, the events in Askja and its lissure swarm are attributed to rise of basaltic magma into a high-level reservoir in the central volcano, subsequent rifting of the reservoir and lateral flow magma within the fissure swarm to emerge in the Sveinagja eruption. This lateral draining of the Askja reservoir is the most plausible cause for caldera collpse. The Sveinagja basalt belong to the group of evolved tholejites characteristie of several Icelandic central volcanoes and associated fissure swarms. Such tholeiites, with Mgvalues in the 40 to 50 tange, represent magmas which have suffered extensive fractional crystallization within the crust. The 12% porphyritic Sveinagja basalt contains phenocrysts of olivine (Fo62–67), plagioclase (An57–62), clinopyroxene (Wo38En46Wo16) and titanomagnetite. Extrusion temperature of the lava, calculated on the basis of olivine and plagioclase geothermometry, is found to be close to 1150°C. 相似文献
60.