首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6527篇
  免费   576篇
  国内免费   171篇
测绘学   251篇
大气科学   722篇
地球物理   2299篇
地质学   2641篇
海洋学   376篇
天文学   495篇
综合类   190篇
自然地理   300篇
  2021年   30篇
  2020年   13篇
  2019年   20篇
  2018年   459篇
  2017年   387篇
  2016年   276篇
  2015年   169篇
  2014年   148篇
  2013年   154篇
  2012年   677篇
  2011年   470篇
  2010年   150篇
  2009年   177篇
  2008年   172篇
  2007年   147篇
  2006年   169篇
  2005年   867篇
  2004年   896篇
  2003年   679篇
  2002年   219篇
  2001年   87篇
  2000年   63篇
  1999年   30篇
  1998年   33篇
  1997年   33篇
  1996年   29篇
  1995年   24篇
  1994年   13篇
  1993年   21篇
  1991年   20篇
  1990年   25篇
  1989年   19篇
  1987年   18篇
  1985年   25篇
  1984年   21篇
  1983年   27篇
  1982年   18篇
  1981年   18篇
  1980年   17篇
  1979年   21篇
  1978年   19篇
  1977年   18篇
  1976年   18篇
  1975年   15篇
  1973年   19篇
  1961年   12篇
  1959年   17篇
  1956年   12篇
  1954年   14篇
  1948年   15篇
排序方式: 共有7274条查询结果,搜索用时 125 毫秒
371.
Vitrinite reflectance was measured in Late Carboniferous to Triassic shales, siltstones and marls of the Karawanken Range. Thermal models of the central South-Karawanken Range were calibrated on the basis of these data. They suggest an eroded overburden of more than 3,200 m of Jurassic to Cretaceous sediments and a heat flow in the range of 42 to 60 mW m?2 during the time of maximum subsidence. Because the reconstructed thermal history of the South-Karawanken Range is very similar to the thermal history of the Generoso basin (western Southern Alps), these data provide strong evidence for a deep basinal position of the Southern Karawanken Range during Jurassic to Cretaceous times. A vitrinite reflectance anomaly at the northern margin of the South-Karawanken Range is explained by advective heat transport during the Oligocene. The heat source for the anomalies at the western margin of the Seeberg Rise and in the area between the Periadriatic Lineament and the Donat Fault Zone is unknown. Vitrinite reflectance in Late Triassic sediments indicates the South-Karawanken Range and the South-Zala Unit of the Pannonian basement as exotic blocks in the Sava Composite Unit. This is explained by Miocene displacement of structural units, which were derived from different paleogeographical segments of the Permo-Mesozoic western Tethyan margin.  相似文献   
372.
We assess the probability and importance of different spatial distributions ofPhragmites australis (Trin Ex Steud) within brackish tidal marshes of the mid-Atlantic United States coast. The comparative impact ofPhragmites expansion on the larger coupled marsh-estuary system may partially be a function of the landscape area dominated byPhragmites, the landscape position occupied byPhragmites, the landscape pattern created byPhragmites expansions, and the resulting impact on tidal drainage networks. We find evidence thatPhragmites establishment can occur at many landscape positions, and thatPhragmites spread within a marsh can occur via colonization (new patches), linear clonal growth (along a preferred axis), or circular clonal growth (non-directional, random spread). Early intervals ofPhragmites spread were dominated by colonization for all sites except for Piermont Marsh (which appeared to be dominated by linear clonal growth) and Lang Tract (which appeared to be dominated by circular clonal growth). Although 46–100% of new patches ofPhragmites occurred within 5 m of drainages, at only one site (Piermont Marsh, New York) didPhragmites populations remain concentrated along creek banks. Except for Iona Island, New York, which appears to be in an early stage ofPhragmites invasion, patch dynamics at all sites showed an increase followed by a decrease in patch number, as independent patches became established, expanded, and coalesced. We also found some evidence for a loss of first order streams at later stages ofPhragmites invasions in several sites (Hog Island, Lang Tract, Silver Run).  相似文献   
373.
We linked a 2-dimensional water quality model of the Patuxent River with a spatially-explicit model of fish growth to simulate how changes in land use in the Patuxent River Basin would affect the growth rate potential (GRP) of Atlantic menhaden (Brevoortia tyrannus). Simulations of three land-use patterns that reflected current nutrient loadings, increased nutrient loadings, and decreased nutrient loadings were used to drive the water quality model. Changes in nutrient loadings caused changes in the timing and intensity of phytoplankton concentrations and the region of hypoxia increased during summer with increased nutrient loading. The spatial distribution of menhaden GRP was highly correlated with phytoplankton concentrations and localized in the middle on third of the Patuxent River. Menhaden growth rate was highest in early June and late summer. During June, menhaden GRP (and phytoplankton concentration) was lowest at the lower nutrient loading simulation. During late summer, mean menhaden growth rates were inversely proportional to nutrient loading rates and menhaden grew best when nutrient loadings were the lowest. Upriver to mid-river phytoplankton patches drove overall mean calculations. Model results suggest that more research is needed on water quality model predictions of phytoplankton levels at a high level of spatial and temporal resolution, menhaden foraging, and menhaden habitat selection.  相似文献   
374.
This study corroborates the hypothesis that nitrogen-fixing cyanobacteria have probably occurred as an important component of the phytoplankton community in the Baltic Sea at least since brackish water conditions were initiated 8,50014C yr BP. Pigment analyses indicate that extensive occurrences started prior to a sharp increase in nutrient levels dated to 7,10014C yr BP. The cyanobacteria could have functioned as a natural trigger for eutrophication in the Baltic Sea by importing nitrogen. This is also verified by a contemporaneous drop in the δ15N values from 4‰ to around 2‰. We further conclude that the spreading of cyanobacteria was probably caused by a decrease in nitrogen∶phosphorus (N∶P) in the water mass that resulted from the intrusion of oceanic water with high P levels. The fractionation of P in sediments indicated that iron-bound P was efficiently sequestered under anoxic conditions that occurred as a consequence of the establishment of a stable stratification caused by the marine intrusion. This pool only showed minor variations around 3 μmol g−1 at the freshwater-brackish water transition. All P pools except the CaCO3 fraction showed a distinct increase around 9,30014C yr BP prior to the transition. We interpreted this increase as a change in preservation of organic matter or in the source of the sediment. Slightly after 4,00014C yr BP there was a dramatic drop in all P pools without any corresponding decreases in total N and carbon. Total P decreased from around 75 to 25–30 μmol g−1. The most dramatic drop occurred in the organic bound and the detrital apatite fractions, which decreased by a factor of 3–4. We explain this as a preferential regeneration of P, especially organic P, compared to other nutrients due to more prevalent anoxic conditions.  相似文献   
375.
The purpose of this paper is to suggest how detailed single-pulse observations of slow radio pulsars may be utilized to construct an empirical model for their emission. It links the observational synthesis developed in a series of papers by Rankin in the 1980s and 90s to the more recent empirical feedback model of Wright (2003a) by regarding the entire pulsar magnetosphere as a non-steady, non-linear interactive system with a natural built-in delay. It is argued that the enhanced role of the outer gap in such a system indicates an evolutionary link to younger pulsars, in which this region is thought to be highly active, and that pulsar magnetospheres should no longer be seen as being driven by events on the neutron stars polar cap, but as having more in common with planetary magnetospheres and auroral phenomena.Received: 8 May 2003, Published online: 14 November 2003 Correspondence to: Joanna M. Rankin. On leave from: Physics Department, University of Vermont, Burlington, VT 05405, USA  相似文献   
376.
The present study deals with tectonomagmatic evolution of the collision-related leucogranite located near the northwest corner of exposed basement in Sinai, Egypt. The area is composed of: (1) a gabbroic complex; (2) amphibolite; (3) post-orogenic leucogranite; (4) Feiran gneisses. The amphibolite and gabbroic suites, generated in an island arc environment, have a high Fe-tholeiitic affinity and were derived from two independent magmas. On the basis of rare earth element (REE) patterns, the gabbroic melts could have been generated from a garnet- and amphibole-bearing, enriched mantle, and were subsequently modified by fractional crystallization of pyroxene and amphibole with minor plagioclase, whereas the amphibolite melts could be derived from garnet-free depleted mantle.The leucogranite has high Al2O3 content (>13 wt%), alumina saturation index (ASI) mostly >1, and normative corundum, indicating a peraluminous nature. Chondrite-normalized REE patterns for the leucogranite show light REE enrichment (La/SmN=2.7–4.86), general flattening of the heavy REE (Gd/LuN=1.2–2), and negative europium (Eu) anomalies (Eu/Eu*=0.24–0.47). The peraluminous nature and enrichment of the incompatible elements (K, Rb, Ba and Th) in the leucogranite strongly suggest derivation from a crustal source. The most probable source for the leucogranite magmas is represented by the adjacent Feiran gneisses, which could have generated the leucogranite by dehydration melting under water-undersaturated conditions. It appears likely that the restite unmixing model is responsible for the chemical variations within the leucogranite. In accordance with this model, the chemical variation of the leucogranite can be attributed to varying degrees of separation of restitic material from the melt during its emplacement and solidification and fractional crystallization could have played a minor role during magma ascent through the crust.  相似文献   
377.
378.
379.
Rhizophora mangle L. (red mangrove) is the dominant species of mangrove in the Americas. At Twin Cays, Belize (BZ) red mangroves are present in a variety of stand structures (tall >5 m in height, transition ~2–4 m and dwarf ~1–1.5 m). These height differences are coupled with very different stable carbon and nitrogen isotopic values[1] (mean tall δ 13C = -28.3‰, δ 15N = 0‰; mean tall δ 13C = -25.3‰, δ 15N = -10‰). To determine the utility of using these distinct isotopic compositions as 'biomarkers' for paleoenvironmental reconstruction of mangrove ecosystems and nutrient availability, we investigated the distribution and isotopic (δ 13C and δ 15N) composition of different biochemical fractions (water soluble compounds, free lipids, acid hydrolysable compounds, individual amino acids, and the residual un-extractable compounds) in fresh and preserved red mangrove leaves from dwarf and tall trees. The distribution of biochemicals are similar in dwarf and tall red mangrove leaves, suggesting that, regardless of stand structure, red mangroves use nutrients for biosynthesis and metabolism in a similar manner. However, the δ 13C and δ 15N of the bulk leaf, the biochemical fractions, and seven amino acids can be used to distinguish dwarf and tall trees at Twin Cays, BZ. The data support the theory that the fractionation of carbon and nitrogen occurs prior to or during uptake in dwarf and tall red mangrove trees. Stable carbon and nitrogen isotopes could, therefore, be powerful tools for predicting levels of nutrient limitation at Twin Cays. The δ 13C and δ 15N of biochemical fractions within preserved leaves, reflect sedimentary cycling and nitrogen immobilization. The δ 15N of the immobilized fraction reveals the overlying stand structure at the time of leaf deposition. The isotopic composition of preserved mangrove leaves could yield significant information about changes in ecosystem dynamics, nutrient limitation and past stand structure in mangrove paleoecosystems.  相似文献   
380.
Systematic morphological changes of the coastline of the outer Yangtze River mouth in response to storms versus calm weather were documented by daily surveys of tidal marshes and flats between April 1999 and May 2001 and by boat surveys offshore during this and earlier periods. The largest single event during 1999 to 2001 was Typhoon Paibaian, which eroded the unvegetated tidal flat and lower marsh and led to accretion on the middle-to-upper marsh and in the subtidal channel. The greatest erosion of 21 cm occurred at the border between the marsh and the unvegetated flat due to the landward retreat of the marsh edge during the storm. Strong waves on the flats increased suspended sediment concentration by 10–20 times. On the upper marsh, where the frequency of submergence by astronomical tides is only 3%, Typhoon Paibian led to 4 cm of accretion, accounting for 57% of the net accretion observed over the 2-yr study. Typhoon Paibian led to 4 cm of accretion, accounting for 57% of the net accretion observed over the 2-yr study. Typhoon Paibian and other large storms in the 1990s caused over 50 cm of accretion along the deep axis of the river mouth outlet channel. During calm weather, when hydrodynamic energy was dominated by tides, deposition was centered on the unvegetated flats and lower, marsh with little deposition on the high marsh and erosion in the subtidal channel. Depositional recovery of the tidal flat from typhoon-induced erosion took only several days, whereas recovery of the subtidal channel by erosion took several weeks. A conceptual model for the morphological responses of tidal marshes, flats, and subtidal channels to storms and calm weather is proposed such that sediment continually moves from regions of highest near-bed energy towards areas of lower energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号