首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   7篇
  国内免费   1篇
测绘学   7篇
大气科学   2篇
地球物理   33篇
地质学   33篇
海洋学   3篇
天文学   17篇
自然地理   4篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   8篇
  2015年   4篇
  2014年   6篇
  2013年   7篇
  2012年   6篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1970年   3篇
  1949年   1篇
排序方式: 共有99条查询结果,搜索用时 31 毫秒
91.
Better quantification of continental water storage variations is expected to improve our understanding of water flows, including evapotranspiration, runoff and river discharge as well as human water abstractions. For the first time, total water storage (TWS) on the land area of the globe as computed by the global water model WaterGAP (Water Global Assessment and Prognosis) was compared to both gravity recovery and climate experiment (GRACE) and global positioning system (GPS) observations. The GRACE satellites sense the effect of TWS on the dynamic gravity field of the Earth. GPS reference points are displaced due to crustal deformation caused by time-varying TWS. Unfortunately, the worldwide coverage of the GPS tracking network is irregular, while GRACE provides global coverage albeit with low spatial resolution. Detrended TWS time series were analyzed by determining scaling factors for mean annual amplitude (f GRACE) and time series of monthly TWS (f GPS). Both GRACE and GPS indicate that WaterGAP underestimates seasonal variations of TWS on most of the land area of the globe. In addition, seasonal maximum TWS occurs 1 month earlier according to WaterGAP than according to GRACE on most land areas. While WaterGAP TWS is sensitive to the applied climate input data, none of the two data sets result in a clearly better fit to the observations. Due to the low number of GPS sites, GPS observations are less useful for validating global hydrological models than GRACE observations, but they serve to support the validity of GRACE TWS as observational target for hydrological modeling. For unknown reasons, WaterGAP appears to fit better to GPS than to GRACE. Both GPS and GRACE data, however, are rather uncertain due to a number of reasons, in particular in dry regions. It is not possible to benefit from either GPS or GRACE observations to monitor and quantify human water abstractions if only detrended (seasonal) TWS variations are considered. Regarding GRACE, this is mainly caused by the attenuation of the TWS differences between water abstraction variants due to the filtering required for GRACE TWS. Regarding GPS, station density is too low. Only if water abstractions lead to long-term changes in TWS by depletion or restoration of water storage in groundwater or large surface water bodies, GRACE may be used to support the quantification of human water abstractions.  相似文献   
92.
During the past millennia, many erosion and accumulation processes have been modified by anthropogenic impact. This holds especially true for the environs of ancient settlements and their harbours along the Mediterranean coasts. Our multi‐proxy investigations in the Roman harbour and the harbour canal of Ephesus (western Turkey) reveals that humans have significantly triggered soil erosion during the last three millennia. Since the eighth century bc , and especially since the Hellenistic period, a high sedimentation rate indicates fast alluviation and delta progradation of the Küçük Menderes. Deforestation, agriculture (especially ploughing) and grazing (especially goats) were the main reasons for erosion of the river catchment area. One consequence was significant siltation of the Hellenistic/Roman harbour basin. This sediment trap archives the human impact, which was strongly enhanced from Hellenistic/Roman to Byzantine times (second/first centuries bc to the sixth/seventh centuries ad ), evidenced by high sedimentation rates, raised values of heavy metal contaminations [lead (Pb), copper (Cu)], the occurrence of fruit tree pollen and of intestinal parasites. From the middle to the end of the first millennium ad , the influence of Ephesus declined, which resulted in a decrease of human impact. Studies of several ancient settlements around the Mediterranean Sea tell a comparable story. They also confirm that during their most flourishing periods the human impact totally overprinted the climatic one. To detect the latter, geo‐bio‐archives of relatively pristine areas have to be investigated in detail. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
93.
Current global urbanisation processes are leading to new forms of massive urban constellations. The conceptualisations and classifications of these, however, are often ambiguous, overlap or lag behind in scientific literature. This article examines whether there is a common denominator to define and delimitate–and ultimately map–these new dimensions of cityscapes. In an extensive literature review we analysed and juxtaposed some of the most common concepts such as megacity, megaregion or megalopolis. We observed that many concepts are abstract or unspecific, and for those concepts for which physical parameters exist, the parameters are neither properly defined nor used in standardised ways. While understandably concepts originate from various disciplines, the authors identify a need for more precise definition and use of parameters. We conclude that often, spatial patterns of large urban areas resemble each other considerably but the definitions vary so widely that these differences may surpass any inconsistencies in the spatial delimitation process. In other words, today we have tools such as earth observation data and Geographic Information Systems to parameterise if clear definitions are provided. This appears not to be the case. The limiting factor when delineating large urban areas seems to be a commonly agreed ontology.  相似文献   
94.
Columnar jointing is a common feature of solidified lavas, sills and dikes, but the factors controlling the characteristic stoutness of columns remain debated, and quantitative field observations are few in number. In this paper, we provide quantitative measurements on sizing of columnar joint sets and our assessment of the principal factors controlling it. We focus on (1) chemistry, as it is the major determinant of the physical (mechanical and thermal) properties of the lava, and (2) geology, as it influences the style of emplacement and lava geometry, setting boundary conditions for the cooling process and the rate of heat loss. In our analysis, we cover lavas with a broad range of chemical compositions (from basanite to phonolite, for six of which we provide new geochemical analyses) and of geological settings. Our field measurements cover 50 columnar jointing sites in three countries. We provide reliable, manually digitized data on the size of individual columns and focus the mathematical analysis on their geometry (23,889 data on side length, of which 17,312 are from full column sections and 3,033 data on cross-sectional area and order of polygonality). The geometrical observations show that the variation in characteristic size of columns between different sites exceeds one order of magnitude (side length ranging from 8 to 338 cm) and that the column-bounding polygons’ average order is less than 6. The network of fractures is found to be longer than required by a minimum-energy hexagonal configuration, indicating a non-equilibrium, geologically quick process. In terms of the development and characteristic sizing of columnar joint sets, our observations suggest that columns are the result of an interplay between the geological setting of emplacement and magma chemistry. When the geological setting constrains the geometry of the emplaced body, it exerts a stronger control on characteristic column stoutness. At unconstrained geometries (e.g. unconfined lava flows), chemistry plays the major role, resulting in stouter columns in felsic lavas and slenderer columns in mafic lavas.  相似文献   
95.
In recent years, various attempts have been made to estimate the amount of numerical mixing in numerical ocean models due to discretisation errors of advection schemes. In this study, a high-resolution coastal model using the ocean circulationmodel GETM is applied to the Western Baltic Sea, which is characterised by energetic and episodic inflows of dense bottom waters originating from the Kattegat. The model is equipped with an easy-to-implement diagnostic method for obtaining the numerical mixing which has recently been suggested. In this diagnostic method, the physical mixing is defined as the mean tracer variance decay rate due to turbulent mixing. The numerical mixing due to discretisation errors of tracer advection schemes is defined as the decay rate between the advected square of the tracer variance and the square of the advected tracer, which can be directly compared to the physical variance decay. The source and location of numerical mixing is further investigated by comparing different advection schemes and analysing the amount of numerical mixing in each spatial dimension during the advection time step. The results show that, for the setup used, the numerically and physically induced mixing have the same orders of magnitude but with different vertical and horizontal distributions. As the main mechanism for high numerical mixing, vertical advection of tracers with strong vertical gradients has been identified. The main reason for high numerical mixing is due to bottom-following coordinates when density gradients, especially for regions of steep slopes, are advected normal to isobaths. With the bottom-following coordinates used here, the horizontal gradients are reproduced by a spurious sawtooth-type profile where strong advection through, but not along, the vertical coordinate levels occurs. Additionally, the well known relation between strong tracer gradients and high velocities on the one and high numerical mixing on the other hand is approved quantitatively within this work.  相似文献   
96.
This study presents the evaluation of 1 year of operational lightning forecasts provided for Europe, using the Weather Research and Forecasting model coupled with a cloud-top height-based lightning parameterization scheme. Three different convective parameterization schemes were employed for parameterizing sub-grid cloud-top heights and consequently driving the lightning scheme. Triggering of the lightning scheme was controlled by means of a model-resolved microphysics-based masking filter, while the formulation for deriving lightning flash rates was also modified, assuming a single “marine” equation instead of the original equations discriminating between continental and marine lightning. Gridded lightning observations were used for evaluating model performance on a dichotomous decision basis. Analysis showed that the lightning scheme is sensitive to the parameterization of convection. In particular, the Kain–Fritsch convective scheme was found to outperform the Grell–Devenyi and Grell–Freitas schemes, showing a statistically significant better performance with respect to lightning prediction. This was most evident during the warm season, while smaller differences among the schemes were recorded during the cold season. Further, for all examined convective schemes, it was found that the application of the masking filter is desirable for improving model performance in terms of lightning forecasting. Last, the reported results revealed that the refinement of the formulation of the lightning parameterization scheme, adhering to a “global” marine equation instead of distinguishing between land and sea lightning, may be necessary in order to obtain reliable lightning forecasts.  相似文献   
97.
Parts I and II of our analysis of the evolution of the solar system were devoted mainly to the mechanical processes. The present part (Part III) deals primarily with the plasma processes and the hydromagnetic aspects.Much confusion in the cosmogonic field is due to the treatment of the early phases of the evolution of a circumstellar medium by pre-hydromagnetic methods, or by erroneous application of magnetohydrodynamics. In order to reduce the speculative element as far as possible the present analysis tries to connect the cosmogonic processes as directly as possible to laboratory plasma physics and to space phenomena actually observed today (Section 10).Models of the Laplacian type have been made obsolete by magnetohydrodynamics. Furthermore they are in conflict with observations. A new model is suggested (Section 11).A plasma surrounding a rotating central body may attain a state of partial corotation which is determined by the balance between gravitation and the centrifugal force acting on a plasma in a dipole field. Condensation from a partially corotating plasma results in grains orbiting in ellipses withe=1/3 and finally accreting to bodies at 2/3 of the central distance of the point of condensation (Section 12).An application of the theory to the Saturnian rings and to the asteroidal belt shows that the falldown ratio 2/3 (derived from the geometry of a dipole field) is essential for the understanding of their structure. The structure of the groups of planets and satellites is also discussed but only in a preliminary way. The behavior of volatile substances is a major problem which still awaits an appropriate treatment (Section 13).  相似文献   
98.
  1. Introduction and Survey. The method for studying the structure and evolution of the solar system is discussed. It is pointed out that theories that account for the origin of planets alone are basically insufficient. Instead one ought to aim for a general theory for the formation of secondary bodies around a central body, applicable both to planet and satellite formation. A satisfactory theory should not start from assumed properties of the primitive Sun, which is a very speculative subject, but should be based on an analysis of present conditions and a successive reconstruction of the past states.
  2. Orbits of Planets and Satellites. As a foundation for the subsequent analysis, the relevant properties of planets and satellites are presented.
  3. The Small Bodies. The motion of small bodies is influenced by non-gravitational forces. Collisions (viscosity) are of special importance for the evolution of the orbits. It is pointed out that the focusing property of a gravitational field (which has usually been neglected) leads to the formation of jet streams. The importance of this concept for the understanding of the comet-meteoroid relations and the structure of the asteroidal belt is shown.
  4. Resonance Structure. A survey is given of the resonances in the solar system and their possible explanation. It is concluded that in many cases the resonances must already be produced at the times when the bodies formed. It is shown that resonance effects put narrow limits on the post-accretional changes of orbits.
  5. Spin and Tides. Tidal effects on planetary spins and satellite orbits are discussed. It is very doubtful if any satellite except the Moon and possibly Triton has had its orbit changed appreciably by tidal effects. The isochronism of planetary and asteroidal spins is discussed, as well as its bearing on the accretional process.
  6. Post-accretional Changes in the Solar System. The stability of the solar system and upper limits for changes in orbital and spin data are examined. It is concluded that much of the present dynamic structure has direct relevance to the primordial processes.
  相似文献   
99.
ABSTRACT

Flood peaks and volumes are essential design variables and can be simulated by precipitation–runoff (P–R) modelling. The high-resolution precipitation time series that are often required for this purpose can be generated by various temporal disaggregation methods. Here, we compare a simple method (M1, one parameter), focusing on the effective precipitation duration for flood simulations, with a multiplicative cascade model (M2, 32/36 parameters). While M2 aims at generating realistic characteristics of precipitation time series, M1 aims only at accurately reproducing flood variables by P–R modelling. Both disaggregation methods were tested on precipitation time series of nine Swiss mesoscale catchments. The generated high-resolution time series served as input for P–R modelling using a lumped HBV model. The results indicate that differences identified in precipitation characteristics of disaggregated time series vanish when introduced into the lumped hydrological model. Moreover, flood peaks were more sensitive than flood volumes to the choice of disaggregation method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号