首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   22篇
  国内免费   2篇
测绘学   4篇
大气科学   19篇
地球物理   60篇
地质学   53篇
海洋学   12篇
天文学   16篇
自然地理   16篇
  2023年   1篇
  2021年   10篇
  2020年   14篇
  2019年   16篇
  2018年   7篇
  2017年   17篇
  2016年   11篇
  2015年   13篇
  2014年   14篇
  2013年   13篇
  2012年   2篇
  2011年   2篇
  2010年   7篇
  2009年   8篇
  2008年   7篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1997年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
81.
82.
Acid-base titrations and electrophoretic mobility measurements were conducted on the thermophilic bacteria Anoxybacillus flavithermus and Geobacillus stearothermophilus at two different growth times corresponding to exponential and stationary/death phase. The data showed significant differences between the two investigated growth times for both bacterial species. In stationary/death phase samples, cells were disrupted and their buffering capacity was lower than that of exponential phase cells. For G. stearothermophilus the electrophoretic mobility profiles changed dramatically. Chemical equilibrium models were developed to simultaneously describe the data from the titrations and the electrophoretic mobility measurements. A simple approach was developed to determine confidence intervals for the overall variance between the model and the experimental data, in order to identify statistically significant changes in model fit and thereby select the simplest model that was able to adequately describe each data set. Exponential phase cells of the investigated thermophiles had a higher total site concentration than the average found for mesophilic bacteria (based on a previously published generalised model for the acid-base behaviour of mesophiles), whereas the opposite was true for cells in stationary/death phase. The results of this study indicate that growth phase is an important parameter that can affect ion binding by bacteria, that growth phase should be considered when developing or employing chemical models for bacteria-bearing systems.  相似文献   
83.
The Apuseni–Banat–Timok–Srednogorie magmatic–metallogenic belt (ABTS belt), forms a substantial metallogenic province in the Balkan-South Carpathian system in southeastern Europe. The belt hosts porphyry, skarn, and epithermal deposits mined since pre-Roman times. Generally, the deposits, prospects, and occurrences within the belt are linked to magmatic centers of calc-alkaline affinity. Fifty-one rhenium-osmium (Re–Os) ages and Re concentration data for molybdenites define systematic geochronologic trends and constrain the geochemical-metallogenic evolution of the belt in space and time. From these data and additional existing geologic-geochemical data, a general tectonic history for the belt is proposed. Mineralization ages in Apuseni-Banat, Timok, and Panagyurishte (the central district of the larger E–W Srednogorie Zone) range from 72–83, 81–88, and 87–92 Ma, respectively, and clearly document increasing age from the northwestern districts to the southeastern districts. Further, Re–Os ages suggest rapidly migrating pulses of Late Cretaceous magmatic–hydrothermal activity with construction of deposits in ~1 m.y., districts in ~10 m.y., and the entire 1,500 km belt in ~20 m.y. Ages in both Timok and Panagyurishte show systematic younging, while deposit ages in Banat and Apuseni are less systematic reflecting a restricted evolution of the tectonic system. Systematic differences are also observed for molybdenite Re concentrations on the belt scale. Re concentrations generally range from hundreds to thousands of parts per million, typical of subduction-related Cu–Au–Mo–(PGE) porphyry systems associated with the generation of juvenile crust. The geochronologic and geochemical trends are compatible with proposed steepening of subducting oceanic slab and relaxation of upper continental plate compression. Resulting influx of sub-continental mantle lithosphere (SCML) and asthenosphere provide a fertile metal source and heat, while the subducting slab contributes connate and mineral dehydration fluids, which facilitate partial melting and metal leaching of SCML and asthenosphere. Cu–Au–Mo–(PGE) porphyry deposits may develop where melts are trapped at shallow crustal levels, often with associated volcanism and epithermal-style deposits (South Banat, Timok, and Panagyurishte). Mo–Fe–Pb–Zn skarn deposits may develop where felsic melts are trapped adjacent to Mesozoic limestones at moderate crustal levels (North Banat and Apuseni). Systematic spatial variations in deposit style, commodity enrichment, Re–Os ages, and Re concentrations support specific tectonic processes that led to ore formation. In a post-collisional setting, subduction of Vardar oceanic crust may have stalled, causing slab steepening and rollback. The slab rollback relaxes compression, facilitating and enhancing orogenic collapse of previously thickened Balkan-South Carpathian crust. The progression of coupled rollback-orogenic collapse is evidenced by the width of Late Cretaceous extensional basins and northward younging of Re–Os ages, from Panagyurishte (~60 km; 92–87 Ma) to Timok (~20 km; 88–81 Ma) to Apuseni-Banat (~5 km; 83–72 Ma). Generation of a well-endowed mineral belt, such as the ABTS, requires a temporally and spatially restricted window of magmatic–hydrothermal activity. This window is quickly opened as upper plate compression relaxes, thereby inducing melt generation and ingress of melt to higher crustal levels. The window is just as quickly closed as upper plate compression is reinstated. The transient tectonic state responsible for economic mineralization in the ABTS belt may be a paleo-analogue to transient intervals in the present subduction tectonics of SE Asia where much mineral wealth has been created in the last few million years.  相似文献   
84.
Middle Paleozoic to Middle Jurassic terrane assemblies in the Klamaths and Sierran Foothills consist of mafic–ultramafic complexes + fine‐grained terrigenous strata derived from previously accreted continental‐margin belts. Sutured oceanic terranes reflect c. 230 Myr of margin‐parallel slip involving chiefly transtension and transpression. Quartzofeldspathic clastic rocks and blueschists ± eclogites are very rare. Little devolatilization occurred at magmagenic depths; hence, coeval hydrothermal ore deposits and granitoids are uncommon. In contrast, nearly head‐on Cretaceous subduction of the Farallon plate generated the massive Klamath–Sierra Nevada volcanic–plutonic arc, reflecting dewatering of the eastward descending oceanic lithosphere in the magmagenic zone. Immature Great Valley forearc and Franciscan trench deposits shed from the arc record c. 70 Myr. of rapid crustal growth. Au‐bearing solutions rising from magmagenic depths, exsolved from plutons, and expelled from heated wall rocks were mobilized attending arc construction. Precipitation of gold‐bearing quartz veins occurred where H2O + CO2‐bearing fluids encountered major geochemical discontinuities in the wall rocks.  相似文献   
85.
This study examined two shallow‐water, offshore oil facilities and their surroundings in the Umm Al Dalkh and Zakum oilfields [United Arab Emirates, Persian (Arabian) Gulf]. The focus was on sediment contamination levels and the detection of disturbance based on two representative invertebrate components of the benthos: molluscs and polychaetes. We tested the hypothesis that significant disturbance to the community has occurred, by examining whether distance from the platform or variation in contaminants explains among‐site variation in the composition of benthic communities. Moreover, we also tested the hypothesis that organic enrichment because of oil input has modified the feeding guild structure by examining whether the relative abundances of filter‐feeders, deposit‐feeders and omnivores are correlated with distance from the platform or with contamination by hydrocarbons. The contamination levels and their spatial distribution in the sediments differed significantly between the two fields, as did their mollusc and polychaete communities. The within‐field variability, however, was much lower: no clear structuring of contamination values and species composition and abundance was detectable in relation to distance from the oil platform. Contamination levels were low, often below detection levels or international guideline values. Variation in contaminant concentrations did not explain variation in taxonomic composition and abundance. The relative abundance of the above‐mentioned feeding guilds did not correlate with either distance from the platform or with contaminant concentrations. These patterns may reflect the long time that has elapsed since drilling (15–20 years), which appears to have allowed contaminants to disperse and degrade and assemblages to recover from the impact, if indeed such a disturbance ever occurred. In contrast to low values of barium and total petroleum hydrocarbons, associated with well drilling, some metals were at their highest concentrations beneath the central platforms. This suggests that production‐related activities (including platform cleaning and maintenance) are currently a more relevant contamination source.  相似文献   
86.
87.
Glacier‐fed river thermal regimes vary markedly in space and time; however, knowledge is limited on the fundamental processes controlling alpine stream temperature dynamics. To address the research gap, this study quantified heat exchanges at the water surface and bed of the Taillon glacier‐fed stream, French Pyrénées. Hydro‐meteorological observations were recorded at 15‐min intervals across two summer melt seasons (2010 and 2011), and energy balance components were measured or estimated based on site‐specific data. Averaged over both seasons, net radiation was the largest heat source (~80% of total flux); sensible heat (~13%) and friction (~3%) were also sources, while heat exchange across the channel–streambed interface was negligible (<1%). Latent heat displayed distinct interannual variability and contributed 5% in 2010 compared with 0.03% in 2011. At the sub‐seasonal scale, latent heat shifted from source to sink, possibly linked to the retreating valley snowline that changed temperature and humidity gradients. These findings represent the first, multiyear study of the heat exchange processes operating in a glacier‐fed stream, providing fundamental process understanding; the research highlights the direct control antecedent (winter) conditions that have on energy exchange and stream temperature during summer months. In particular, the timing and volume of snowfall/snowmelt can drive thermal dynamics by the following: (1) altering the length of the stream network exposed to the atmosphere and (2) controlling the volume and timing of cold water advection downstream. Finally, this study highlights the need to develop long‐term hydro‐meteorological monitoring stations to improve the understanding of these highly dynamic, climatically sensitive systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号