首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   8篇
  国内免费   10篇
测绘学   1篇
大气科学   4篇
地球物理   10篇
地质学   47篇
海洋学   3篇
天文学   1篇
综合类   3篇
自然地理   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2015年   2篇
  2014年   3篇
  2013年   15篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   4篇
  1991年   1篇
  1990年   1篇
  1977年   2篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
61.
Here, we present results of the first 40Ar/39Ar dating of osumilite, a high‐T mineral that occurs in some volcanic and high‐grade metamorphic rocks. The metamorphic osumilite studied here is from a metapelitic rock within the Rogaland–Vest Agder Sector, Norway, an area that experienced regional granulite facies metamorphism and subsequent contact metamorphism between 1,100 Ma and 850 Ma. The large grain size (~1 cm) of osumilite in the studied rock, which preserves a nominally anhydrous assemblage, increases the potential for large portions of individual grains to have remained essentially unaffected by the effects of diffusive argon loss, potentially preserving prograde ages. Step‐heating diffusion experiments yielded a maximum activation energy of ~461 kJ/mol and a pre‐exponential factor of ~8.34 × 108 cm2/s for Ar diffusion in osumilite. These parameters correspond to a relatively high closure temperature of ~620°C for a cooling rate of 10°C/Ma in an osumilite crystal with a 175 µm radius. Fragments of osumilite separated from the sample preserve a range of ages between c. 1,070 and 860 Ma. The oldest ages are inferred to date the growth of coarse‐grained osumilite during prograde granulite facies regional metamorphism, which pre‐date contact metamorphism that has historically been ascribed to the growth of osumilite in the region. The majority of fragments record ages between c. 920 and 860 Ma, inferred to reflect the growth of osumilite and/or diffusive argon loss during contact metamorphism. The retention of old 40Ar/39Ar dates was facilitated by the low diffusivity of Ar in osumilite (i.e. a closed system), large grain sizes, and anhydrous metamorphic conditions. The ability to date osumilite with the 40Ar/39Ar method provides a valuable new thermochronometer that may constrain the timing and duration of high‐T magmatic and metamorphic events.  相似文献   
62.
Lawsonite eclogite and garnet blueschist occur as metre-scale blocks within serpentinite mélange in the southern New England Orogen (SNEO) in eastern Australia. These high-P fragments are the products of early Palaeozoic subduction of the palaeo-Pacific plate beneath East Gondwana. Lu–Hf, Sm–Nd, and U–Pb geochronological data from Port Macquarie show that eclogite mineral assemblages formed between c. 500 and 470 Ma ago and became mixed together within a serpentinite-filled subduction channel. Age data and P–T modelling indicate lawsonite eclogite formed at ~2.7 GPa and 590°C at c. 490 Ma, whereas peak garnet in blueschist formed at ~2.0 GPa and 550°C at c. 470 Ma. The post-peak evolution of lawsonite eclogite was associated with the preservation of pristine lawsonite-bearing assemblages and the formation of glaucophane. By contrast, the garnet blueschist was derived from a precursor garnet–omphacite assemblage. The geochronological data from these different aged high-P assemblages indicate the high-P rocks were formed during subduction on the margin of cratonic Australia during the Cambro-Ordovician. The rocks however now reside in the Devonian–Carboniferous southern SNEO, which forms the youngest and most outboard of the eastern Gondwanan Australian orogenic belts. Geodynamic modelling suggests that over the time-scales that subduction products accumulated, the high-P rocks migrated large distances (~>1,000 km) during slab retreat. Consequently, high-P rocks that are trapped in subduction channels may also migrate large distances prior to exhumation, potentially becoming incorporated into younger orogenic belts whose evolution is not directly related to the formation of the exhumed high-P rocks.  相似文献   
63.
http://www.sciencedirect.com/science/article/pii/S1674987114001352   总被引:8,自引:5,他引:3  
Ultrahigh temperature(UHT) metamorphism is the most thermally extreme form of regional crustal metamorphism,with temperatures exceeding 900℃.UHT crustal metamorphism is recognised in more than 50 localities globally in the metaniorphic rock record and is accepted as 'normal' in the spectrum of regional crustal processes.UHT metamorphism is typically identified on the basis of diagnostic mineral assemblages such as sapphirine+ quartz,orthopyroxene + sillimanite ± quartz and osumilite in Mg-AIrich rock compositions,now usually coupled with pseudosection-based thermobarometry using internally-consistent thermodynamic data sets and/or Al-in-Orthopyroxene and ternary feldspar thermobarometry.Significant progress in the understanding of regional UHT metamorphism in recent years includes:(1) development of a ferric iron activity-composition thermodynamic model for sapphirine,allowing phase diagram calculations for oxidised rock compositions:(2) quantification of UHT conditions via trace element thermometry,with Zr-in-rutile more commonly recording higher temperatures than Ti-in-zircon.Rutile is likely to be stable at peak UHT conditions whereas zircon may only grow as UHT rocks are cooling.In addition,the extent to which Zr diffuses out of rutile is controlled by chemical communication with zircon;(3) more fully recognising and utilising temperature-dependent thermal properties of the crust,and the possible range of heat sources causing metamorphism in geodynamic modelling studies:(4) recognising that crust partially melted either in a previous event or earlier in a long-duration event has greater capacity than fertile,unmelted crust to achieve UHT conditions due to the heat energy consumed by partial melting reactions:(5) more strongly linking U-Pb geochronological data from zircon and monazite to P-T points or path segments through using Y + REE partitioning between accessory and major phases,as well as phase diagrams incorporating Zr and REE;and(6)improved insight into the settings and factors responsible for UHT metamorphism via geodynamic forward models.These models suggest that regional UHT metamorphism is,principally,geodynamically related to subduction,coupled with elevated crustal radiogenic heat generation rates.  相似文献   
64.
Mg-rich and Fe-rich metatholeiites intruded the Willyama Supergroup of the southern Australian Curnamona Province in the Late Palaeoproterozoic at ca 1700 Ma and 1685 Ma, respectively. Intrusion of the Fe-rich metatholeiites occurred during a period of punctuated extension in the Willyama basin. Major-element concentrations are variable (SiO2 45.4 – 56.5 wt%; Fe2O3? 8.5 – 20.7; TiO2 0.46 – 2.52 wt%; Mg# 70.5 – 29.1) and, in conjunction with trace-element data, support near-closed-system fractionation of a mantle-derived melt with little or no replenishment. Fractionation produced progressively Fe-rich derivative melts. Crystallising phases were dominated by clinopyroxene and olivine, whereas Fe – (Ti) oxide crystallisation was hindered. Primitive mantle-normalised immobile trace elements are characterised by variable Th, Nb, Sr, P and Ti anomalies. Chondrite-normalised rare-earth element patterns for the most primitive, Mg-rich samples from the western Broken Hill Domain have LaN/SmN < 1, whereas the most evolved Fe-rich samples from the Olary Domain have ratios of LaN/SmN > 1. Initial εNd values range between – 2.2 and + 2.7 for the majority of the samples, with the isotopic compositions showing no correlation with differentiation or assimilation. The combined geochemical and isotopic data suggest that the southern Curnamona Province metatholeiites were extracted from a depleted mantle in the western Broken Hill Domain, and a variably enriched, heterogeneous subcontinental lithospheric mantle in the Olary Domain. Magmatism most likely occurred in a backarc basin or intracontinental setting. It is speculated that the geochemically enriched mantle component was derived from subduction-related processes, probably related to pre-Willyama basin accretionary processes along the southern and eastern margins of the North Australian Craton.  相似文献   
65.
LA-ICPMS U–Pb data from metamorphic monazite in upper amphibolite and granulite-grade metasedimentary rocks indicate that the Nawa Domain of the northern Gawler Craton in southern Australia underwent multiple high-grade metamorphic events in the Late Paleoproterozoic and Early Mesoproterozoic. Five of the six samples investigated here record metamorphic monazite growth during the period 1730–1690 Ma, coincident with the Kimban Orogeny, which shaped the crustal architecture of the southeastern Gawler Craton. Combined with existing detrital zircon U–Pb data, the metamorphic monazite ages constrain deposition of the northern Gawler metasedimentary protoliths to the interval ca 1750–1720 Ma. The new age data highlight the craton-wide nature of the 1730–1690 Ma Kimban Orogeny in the Gawler Craton. In the Mabel Creek Ridge region of the Nawa Domain, rocks metamorphosed during the Kimban Orogeny were reworked during the Kararan Orogeny (1570–1555 Ma). The obtained Kararan Orogeny monazite ages are within uncertainty of ca 1590–1575 Ma zircon U–Pb metamorphic ages from the Mt Woods Domain in the central-eastern Gawler Craton, which indicate that high-grade metamorphism and associated deformation were coeval with the craton-scale Hiltaba magmatic event. The timing of this deformation, and the implied compressional vector, is similar to the latter stages of the Olarian Orogeny in the adjacent Curnamona Province and appears to be part of a westward migration in the timing of deformation and metamorphism in the southern Australian Proterozoic over the interval 1600–1545 Ma. This pattern of westward-shifting tectonism is defined by the Olarian Orogeny (1600–1585 Ma, Curnamona Province), Mt Woods deformation (1590–1575 Ma), Mabel Creek Ridge deformation (1570–1555 Ma, Kararan Orogeny) and Fowler Domain deformation (1555–1545 Ma, Kararan Orogeny). This westward migration of deformation suggests the existence of a large evolving tectonic system that encompassed the emplacement of the voluminous Hiltaba Suite and associated volcanic and mineral systems.  相似文献   
66.
Field relationships and LA-ICP-MS U–Pb geochronology from the Yundurbungu Hills (Aileron Province, central Australia) reveal a record of 1808–1770 Ma bimodal magmatism, sedimentation, high-temperature deformation and metamorphism. Specifically, the data presented here provide the first unequivocal evidence for ca 1774 Ma high-temperature deformation and metamorphism during the 1790–1770 Ma Yambah Event in the southern part of the North Australian Craton. Granitic lithologies were synkinematically emplaced between 1808 and 1770 Ma, with early phases recording D1 deformation and the youngest phase postdating D1 deformation. The protolith to a D1 deformed metasedimentary unit was deposited between 1792 and 1774 Ma, followed by the intrusion and deformation of a composite mafic–felsic magmatic association at ca 1774 Ma. An S1 migmatitic fabric in the composite mafic–felsic gneiss is truncated by the youngest (ca 1770 Ma) phase of granitic magmatism, constraining the timing of S1 deformation. A second period of sedimentation appears to post-date D1 deformation, with deposition occurring sometime after ca 1774 Ma. Subsequent overprinting during the 1590–1550 Ma Chewings Event is recorded by the growth of metamorphic monazite and zircon. This event deformed the ca 1774 Ma S1 gneissic fabric, producing a composite S1/S2 gneissic fabric in early metasedimentary and magmatic lithologies and a simple S2-only fabric in lithologies that were intruded or deposited after ca 1774 Ma. Consistent with previous work, we suggest that localised high-temperature deformation and bimodal magmatism at ca 1774 Ma in the Yundurbungu Hills is consistent with a back-arc setting linked to prolonged north-directed subduction.  相似文献   
67.
Induced electrical currents within Europa inferred from Galileo spacecraft magnetometer instrument data have been interpreted as due to a salty europan ocean. Published compositional models for Europa's ocean, based on aqueous leaching of carbonaceous chondrites, range over five orders of magnitude in predicted magnesium sulfate concentrations. We combine the Galileo spacecraft magnetometer-derived oceanic conductivities and radio Doppler data-derived interior models with laboratory conductivity vs concentration data for both magnesium sulfate solutions and terrestrial seawater to determine empirically the range of salt concentrations permitted for Europa's ocean. Solutions for both a three-layer spherical model, and a five-layer half-space model, that satisfy current preferred best fits to magnetometer data imply high, near-saturation salt concentrations and require a europan ice shell of less than 15 km thick, with a best fit at 4 km ice thickness. Adding a conductive core and mantle has a negligible effect on the amplitude when ocean conductivities are greater than a few Siemens per meter. Similarly, we find that including a realistic ionosphere has a negligible effect. We examine the implications of these results for the subsurface habitability of Europa.  相似文献   
68.
Garnet is a vital mineral for determining constrained P–T–t paths as it can give both the P–T and t information directly. However, estimates of the closure temperature of the Sm–Nd system in garnet vary considerably leading to significant uncertainties in the timing of peak conditions. In this study, five igneous garnets from an early Proterozoic 2414 ± 6 Ma garnet—cordierite bearing s-type granite—which was subjected to high-T reworking have been dated to examine their diffusional behaviour in the Sm–Nd system. Garnets 8, 7, 6 and 2.5 mm in diameter were compositionally profiled and then dated, producing two-point Sm–Nd isochron ages of 2412 ± 10, 2377 ± 5, 2370 ± 5 and 2365 ± 8 and 2313 ± 11 Ma, respectively. A direct correlation exists between grain size and amount of resetting highlighting the effect of grain size on closure temperature. Major element EMPA and LA-ICPMS REE traverses reveal homogenous major element profiles and relict igneous REE profiles. The retention of REE zoning and homogenisation of major element zoning suggest that diffusion rates of REEs are considerably slower than that of the major cations. The retention of REE zoning and the lack of resetting in the largest grains suggest that Sm–Nd closure temperature in garnet is a function of grain size, thermal history and REE zoning in garnet.  相似文献   
69.
70.
In the Linxia Basin on the northeast margin of the Tibetan Plateau, the Cenozoic strata are very thick and well exposed. Abundant mammalian fossils are discovered in the deposits from the Late Oligocene to the Early Pleistocene. The Dzungariotherium fauna comes from the sandstones of the Jiaozigou Formation, including many representative Late Oligocene taxa. The Platybelodon fauna comes from the sandstones of the Dongxiang Formation and the conglomerates of the Laogou Formation, and its fossils are typical Middle Miocene forms, such as Hemicyon, Amphicyon, Platybelodon, Choerolophodon, Anchitherium, and Hispanotherium. The Hipparion fauna comes from the red clay of the Liushu and Hewangjia Formations, and its fossils can be distinctly divided into four levels, including three Late Miocene levels and one Early Pliocene level. In the Linxia Basin, the Hipparion fauna has the richest mammalian fossils. The Equus fauna comes from the Wucheng Loess, and it is slightly older than that of the classical Early Pl  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号