首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1597篇
  免费   346篇
  国内免费   405篇
测绘学   72篇
大气科学   456篇
地球物理   438篇
地质学   748篇
海洋学   216篇
天文学   121篇
综合类   150篇
自然地理   147篇
  2024年   7篇
  2023年   27篇
  2022年   55篇
  2021年   61篇
  2020年   52篇
  2019年   60篇
  2018年   59篇
  2017年   62篇
  2016年   77篇
  2015年   68篇
  2014年   60篇
  2013年   80篇
  2012年   81篇
  2011年   92篇
  2010年   83篇
  2009年   89篇
  2008年   82篇
  2007年   108篇
  2006年   83篇
  2005年   52篇
  2004年   45篇
  2003年   67篇
  2002年   45篇
  2001年   47篇
  2000年   73篇
  1999年   101篇
  1998年   92篇
  1997年   75篇
  1996年   78篇
  1995年   57篇
  1994年   53篇
  1993年   53篇
  1992年   30篇
  1991年   28篇
  1990年   26篇
  1989年   20篇
  1988年   32篇
  1987年   12篇
  1986年   13篇
  1985年   10篇
  1984年   12篇
  1983年   11篇
  1982年   8篇
  1981年   5篇
  1980年   7篇
  1978年   3篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有2348条查询结果,搜索用时 0 毫秒
81.
为改善风云三号 (FY-3) 微波成像仪10.6 GHz通道空间分辨率,提出利用超分辨率图像重建算法进行图像重建。分析并指出FY-3微波成像仪10.6 GHz通道具有过采样特征,具备重建得到高于瞬时视场图像的潜力;基于超分辨率图像重建理论,根据FY-3气象卫星轨道、姿态,微波成像仪性能参数以及工作模式等物理约束,建立微波成像仪的超分辨率成像模型,并推导计算出超分辨率成像模型参数;采用POCS算法重建得到10.6 GHz通道的超分辨率图像,采用目视比较分析、图像统计分析对重建图像进行质量评价:重建图像像元平均梯度提高26.5%,功率谱分量和提高5.7%,重建图像具有更高的空间分辨率;台风亮温分析应用显示了从重建图像可发现更微小的景物细节目标。采用超分辨率图像重建算法对FY-3微波成像仪10.6 GHz通道进行重建处理,结果有效且正确,可为数据用户提供更多可用的遥感数据,对微波遥感数据应用具有提升作用。  相似文献   
82.
为了进一步研究移动测量系统的数据处理问题,该文根据点云的基本特征,归纳了由7个特征构成的点云原始特征向量,在此基础上,结合语义环境构建了由17个特征构成的点云扩展特征向量,并采用支持向量机模型对车载LiDAR点云进行行道树点云识别的一系列实验。实验中采用粒子群优化算法和遗传算法对支持向量机进行参数寻优;采用不同特征向量和不同数目样本对点云进行学习和目标识别;分析了特征向量的学习曲线和识别精度。实验结果表明,支持向量机模型能够在行道树点云识别中取得较高的精度。  相似文献   
83.
In organic-rich gas shales, clay minerals and organic matter (OM) have significant influences on the origin, preservation, and production of shale gas. Because of the substantial role of nanoscale pores in the generation, storage, and seepage of shale gas, we examined the effects of clay minerals and OM on nanoscale pore distribution characteristics in Lower Paleozoic shale gas reservoirs. Using the Niutitang and Longmaxi shales as examples, we determined the effects of clay minerals and OM on pores through sedimentation experiments. Field emission–scanning electron microscopy combined with low-pressure N2 adsorption of the samples before and after sedimentation showed significant differences in pore location and pore size distribution between the Niutitang and Longmaxi shales. Nanoscale pores mostly existed in OM in the Longmaxi shale and in clay minerals or OM–clay composites in the Niutitang shale. The distribution differences were attributed largely to variability in thermal evolution and tectonic development and might account for the difference in gas-bearing capacity between the Niutitang and Longmaxi reservoirs. In the nanoscale range, mesopores accounted for 61–76% of total nanoscale pore volume. Considerably developed nanoscale pores in OM were distributed in a broad size range in the Longmaxi shale, which led to good pore connectivity and gas production. Numerous narrow pores (i.e., pores?<?20 nm) in OM–clay composites were found in the Niutitang shale, and might account for this shale’s poor pore connectivity and low gas production efficiency. Enhancing the connectivity of the mesopores (especially pores?<?20 nm and those developed in OM–clay composites) might be the key to improving development of the Niutitang shale. The findings provide new insight into the formation and evolutionary mechanism of nanoscale pores developed in OM and clay minerals.  相似文献   
84.
Some Au deposits in southern Anhui Province have recently been found to be closely associated with Late Mesozoic intrusions. Typical examples include the Huashan Au (Sb) deposit and Au deposits at Zhaojialing, Wuxi, and Liaojia. In order to understand the mechanisms that led the formation of these Au deposits, we make detailed reviews on the geological characteristics of these Au deposits. Specifically, we present new LA-ICP-MS zircon U–Pb dating, along with elemental and Hf isotopic data from the Huashan Au (Sb) deposit. Our data suggests that the Huashan ore-related intrusions were emplaced during the Late Jurassic and Early Cretaceous periods (144–148 Ma). They are characterized by arc-magma features and high oxygen fugacity and are rich in inherited zircons. Zircon U–Pb ages and Lu–Hf isotopes from intrusions suggest that Proterozoic juvenile lithosphere is the main source of these intrusions. The regional geological history implies that lithosphere beneath southern Anhui was produced during a Proterozoic subduction and was fertilized with Au (Cu) in the process. Integrated with the results of previous studies, we inferred that Late Mesozoic intrusions formed by the remelting of the lithosphere could provide the metal endowment for the Au-rich deposits in southern Anhui.  相似文献   
85.
The rock masses of hydro-fluctuation belt experience seepage pressure following impoundment in the Three Gorges Reservoir; its creep behaviors are significant for reservoir bank slopes. To study the creep behaviors under seepage pressure (0, 1.45, and 1.75 MPa), we performed creep tests using representative landslide sandstone in the Three Gorges Reservoir and investigated the sandstone creep behaviors under the coupling effects of seepage pressure and stress. Previous researches on rocks have usually regarded the creep constitutive parameter as a constant; however, in this study, a nonlinear, nonstationary, plastic-viscous (NNPV) creep model which can describe the curve of sandstone creep tests is proposed. The rock-creep parameters under three levels of seepage pressure were identified, and theoretical curves using the NNPV model agreed well with the experimental data, indicating that the new model cannot only describe the primary creep and secondary creep stages under varying seepage pressures but also, in particular, perfectly describes the tertiary creep stage. Finally, the sensitivity of the NNPV model parameters is analyzed, and the result shows that the nonstationary coefficient α and the nonlinear coefficient m are main parameters affecting the tertiary creep stage.  相似文献   
86.
Rockfalls strongly influence the evolution of steep rocky landscapes and represent a significant hazard in mountainous areas. Defining the most probable future rockfall source areas is of primary importance for both geomorphological investigations and hazard assessment. Thus, a need exists to understand which areas of a steep cliff are more likely to be affected by a rockfall. An important analytical gap exists between regional rockfall susceptibility studies and block-specific geomechanical calculations. Here we present methods for quantifying rockfall susceptibility at the cliff scale, which is suitable for sub-regional hazard assessment (hundreds to thousands of square meters). Our methods use three-dimensional point clouds acquired by terrestrial laser scanning to quantify the fracture patterns and compute failure mechanisms for planar, wedge, and toppling failures on vertical and overhanging rock walls. As a part of this work, we developed a rockfall susceptibility index for each type of failure mechanism according to the interaction between the discontinuities and the local cliff orientation. The susceptibility for slope parallel exfoliation-type failures, which are generally hard to identify, is partly captured by planar and toppling susceptibility indexes. We tested the methods for detecting the most susceptible rockfall source areas on two famously steep landscapes, Yosemite Valley (California, USA) and the Drus in the Mont-Blanc massif (France). Our rockfall susceptibility models show good correspondence with active rockfall sources. The methods offer new tools for investigating rockfall hazard and improving our understanding of rockfall processes.  相似文献   
87.
ABSTRACT

The Guichi ore-cluster district in the Lower Yangtze River Metallogenic Belt hosts extensive Cu–Au–Mo polymetallic deposits including the Tongshan Cu–Mo, Paodaoling Au, Matou Cu–Mo, Anzishan Cu–Mo, Guilinzheng Mo and Zhaceqiao Au deposits, mostly associated with the late Mesozoic magmatic rocks, which has been drawn to attention of study and exploration. However, the metallogenic relationship between magmatic rocks and the Cu–Au-polymetallic deposits is not well constrained. In this study, we report new zircon U–Pb ages, Hf isotopic, and geochemical data for the ore-bearing intrusions of Guichi region. LA-ICP-MS U–Pb ages for the Anzishan quartz diorite porphyrite is 143.9 ± 1.0 Ma. Integrated with previous geochronological data, these late Mesozoic magmatic rocks can be subdivided into two stages of magmatic activities. The first stage (150–132 Ma) is characterized by high-K calc-alkaline intrusions closely associated with Cu–Au polymetallic ore deposits. Whereas, the second stage (130–125 Ma) produced granites and syenites and is mainly characterized by shoshonite series that are related to Mo–Cu mineralization. The first stage of magmatic rocks is considered to be formed by partial melting of subducted Palaeo-Pacific Plate, assimilated with Yangtze lower crust and remelting Meso-Neoproterozoic crust/sediments. The second stage of magmatism is originated from partial melting of Mesoproterozoic-Neoproterozoic crust, mixed with juvenile crustal materials. The depression cross to the uplift zone of the Jiangnan Ancient Continent forms a gradual transition relation, and the hydrothermal mineralization composite with two stages have certain characteristics along the regional fault (Gaotan Fault). Guichi region results from two episodes of magmatism probably related to tectonic transition from subduction of Palaeo-Pacific Plate to back-arc extensional setting between 150 and 125 Ma, which lead to the Mesozoic large-scale polymetallic mineralization events in southeast China.  相似文献   
88.
Gu  ChaoJun  Zhu  Yongqing  Li  Renhua  Yao  He  Mu  Xingmin 《Natural Hazards》2021,109(1):545-566

The runoff and sediment load of the Loess Plateau have changed significantly due to the implementation of soil and water conservation measures since the 1970s. However, the effects of soil and water conservation measures on hydrological extremes have rarely been considered. In this study, we investigated the variations in hydrological extremes and flood processes during different periods in the Yanhe River Basin (a tributary of the Loess Plateau) based on the daily mean runoff and 117 flood event data from 1956 to 2013. The study periods were divided into reference period (1956–1969), engineering measures period (1970–1995), and biological control measures period (1996–2013) according to the change points of the annual streamflow and the actual human activity in the basin. The results of the hydrological high extremes (HF1max, HF3max, HF7max) exhibit a decreasing trend (P?<?0.01), whereas the hydrological low extremes (HBF1min, HBF3min, HBF7min) show an increasing trend during 1956–2013. Compared with the hydrological extremes during the reference period, the hydrological high extremes increased during the engineering measures period at low (<?15%) and high frequency (>?80%), whereas decreased during the biological control measures period at almost all frequencies. The hydrological low extremes generally increased during both the engineering measures and biological control measures periods, particularly during the latter period. At the flood event scale, most flood event indices in connection with the runoff and sediment during the engineering measures period were significantly higher than those during the biological control measures period. The above results indicate that the ability to withstand hydrological extremes for the biological control measures was greater than that for the engineering measures in the studied basin. This work reveals the effects of different soil and water conservation measures on hydrological extremes in a typical basin of the Loess Plateau and hence can provide a useful reference for regional soil erosion control and disaster prevention policy-making.

  相似文献   
89.
Li  Kai-Qi  Li  Dian-Qing  Chen  Dar-Hao  Gu  Shi-Xiang  Liu  Yong 《Acta Geotechnica》2021,16(11):3455-3466
Acta Geotechnica - Soils have a variety of mineral compositions. Although a number of thermal conductivity models have been developed for soils, few quantitatively investigated the effect of...  相似文献   
90.
To accurately evaluate ecological risks trigged by groundwater exploitation, it must be clarified the relationship between vegetation and groundwater. Based on remote sensing data sets MOD13Q1, groundwater table depth (WTD) and total dissolved solids (TDS), the relationship between groundwater and natural vegetation was analyzed statistically in the main plain areas of Qaidam Basin. The results indicate that natural vegetation is groundwater-dependent in areas where WTD is less than 5.5 m and TDS is less than 7.5 g/L. Aquatic vegetation, hygrophytic vegetation and hygrophytic saline-alkali tolerant vegetation are mainly distributed in areas with WTD <1.1 m. Salt-tolerant and mesophytic vegetation mainly occur in areas with WTD of 1.4-3.5 m, while the xerophytic vegetation isprimarily present in areas where WTD ranges from 1.4 m to 5.5 m. Natural vegetation does not necessarily depend on groundwater in areas with WTD >5.5 m. For natural vegetation, the most suitable water TDS is less than 1.5 g/L, the moderately suitable TDS is 1.5-5.0 g/L, the basically suitable TDS is 5.0-7.5 g/L, and the unsuitable TDS is more than 7.5 g/L.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号