首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   4篇
  国内免费   3篇
测绘学   1篇
大气科学   20篇
地球物理   35篇
地质学   79篇
海洋学   9篇
天文学   2篇
自然地理   3篇
  2022年   8篇
  2021年   7篇
  2020年   8篇
  2019年   2篇
  2018年   18篇
  2017年   14篇
  2016年   19篇
  2015年   6篇
  2014年   8篇
  2013年   15篇
  2012年   6篇
  2011年   4篇
  2010年   8篇
  2009年   5篇
  2008年   2篇
  2007年   1篇
  2006年   6篇
  2003年   3篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1978年   1篇
排序方式: 共有149条查询结果,搜索用时 11 毫秒
141.
In this numerical study the effects of the stratification and change in material type on the dynamic behavior of the clayey basins are investigated. For this purpose two kinds of single and double layer basin models with the total depth of 100 m and width of 2 km have been selected. The single layer basins consist of soft, medium and stiff clayey materials, while double layer basins consist of a stiff sandy sub-layer overlaid by one of the soft, medium and stiff clayey soil layer. A range of bedrock inclinations at the valley sides from slighter \(10^{\circ }\) and \(20^{\circ }\) to steeper \(30^{\circ }\) and \(40^{\circ }\) are selected. A numerical study using finite difference based nonlinear code which utilizes appropriate static and dynamic boundary conditions, and includes hysteresis damping formulation based on user defined degradation curves is conducted using real earthquake motions of different strength and frequency content. The results of the 2D analyses show the differences in dynamic behavior of single and double layer basins from the aspect of amount and position of the maximum amplification and resonance period. It was seen that the shallower lateral parts of the basins are sensitive to lower periods while inner parts are sensitive to higher periods. Among other differences, the most important difference between the behavior of single and double layer basins was seen at the resonance period of the inner parts of the basins.  相似文献   
142.
Mineralogy and Petrology - The Northern Central Iranian Micro-continent (CIM) represents Neotethys-related oceanic crust remnants, emplaced due to convergence between CIM and Eurasia plates during...  相似文献   
143.
Badab Sourt travertine‐depositing springs in the north of Iran, naturally create a unique surreal landscape containing a range of stepped travertine terraces, similarly found only in a few other places on earth. This site comprises of three travertine saline springs with different values of salinity and discharge (SP1, SP2, and SP3) and one non‐travertine fresh karstic spring (SP4) within a distance of about 300 m. The etiology behind this salinity and the water origin are the main research's dilemma that were investigated using geological, hydrochemical, and stable isotopic techniques. Based on the topography and isotopic results, the carbonate formations in northern (Khoshyeilagh and Mobarak) and southern (Cretaceous limestone) parts of the springs potentially provide the initial hydraulic gradient for deep circulation of the water and CO2. However, geological studies indicate that the hydraulic connectivity of the Cretaceous formation to the travertine springs is interrupted by impermeable geological formations. Based on the proposed conceptual hydrogeological model and mass balance calculations, the SP4 spring is locally recharged from the nearby karstic area of Khoshyeilagh formation through shallow, short and steep groundwater flow circulation that is completely different from the travertine springs. The travertine spring (SP1) is recharged from more distant areas having higher altitudes on Mobarak and Khoshyeilagh limestone and circulate more deeply before emerging on the surface. The SP2 and SP3 springs can derive from the mixing of the saline water (SP1) and fresh water (SP4). The dissolution of interlayers of halite in Shemshak formation is concluded as the main source of salinity. This is the first research article in detail to survey hydrogeology of the travertine springs in Iran.  相似文献   
144.
In this study, the photocatalytic degradation of Congo red has been investigated in N-doped TiO2 (N-TiO2) aqueous suspensions under visible light irradiation. Visible light-active N-TiO2 was successfully prepared at three different weight contents (2.5, 5, and 7%) employing sol–gel method. It was able to harvest the visible irradiation with wavelength suitable for activation. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometer, diffused reflectance UV–Vis spectroscopy, nitrogen adsorption Brunauer–Emmert–Teller, Raman spectroscopy, photoluminescence and X-ray photoelectron spectrometer were used to characterize the doped catalyst. The samples had a relatively large specific Brunauer–Emmert–Teller surface areas of about 42 m2 g?1 with average X-ray diffraction crystalline size of 52 nm and showed visible light photocatalytic activity at about 408 nm. The impacts of several operating parameters on the Congo red photodegradation process were examined. Langmuir–Hinshelwood model exhibited pseudo-first-order degradation kinetics. N-TiO2-assisted plausible photodegradation mechanism has been suggested based on the qualitatively detected intermediate compounds.  相似文献   
145.
In the present study, trends of rainfall of the Central India were evaluated in monthly, seasonal, and annual time scales using the Revised Mann-Kendall (RMK) test, Sen’s slope estimator, and innovative trend method (ITM). For this purpose, the monthly rainfall data for 20 stations in Madhya Pradesh (MP) and Chhattisgarh (CG) states in Central India during 1901–2010 was used. The Sen’s slope estimator was utilized for calculating the slope of rainfall trend line. Based on the obtained results of RMK test, there is no significant trend in the stations for the January and October months. The results also showed that for MP, two out of 15 considered stations indicate significant annual trend, while the CG has four out of five stations with significant trend. The results of applying ITM test indicated that most of the stations have decreasing trends in annual (16 stations), summer (16 stations), and monsoon (11 stations) seasons, while the winter (12 stations) and post monsoon (11 stations) seasons generally show increasing trend. Unlike the RMK, the ITM shows significant increasing trend in rainfall of November and December months. The finding of current study can be used for irrigation and water resource management purpose over the Central India.  相似文献   
146.
147.
The recession hydrographs of karst springs provide important information about aquifer characteristics such as storage properties and drainage potential, karstification degree, and other hydrological features. The Faresban, Famaasb, Gonbad-e-Kabood, and Gian springs are the important karst springs which drain main karst aquifers in west of Iran. In this study, we evaluate hydrological characteristics of these four karst springs using different analytic equations. Almost, all the recession curves were well fitted by a function that consists of three main exponential terms. The initial portion of the recession curve represents the fast drainage of large fractures and conduits, ending with the slowly decreasing curve, where the drainage of rock matrix and small fissures or baseflow is dominant. The Gian spring has the largest storage volume but the lowest drained water (7%). Using Mangin’s equation, it is apparent that the baseflow supplies over 85% of the total drained water to the Gian spring, while a small quantity of total outflow is made up of quickflow periods. Of the water available to the Famaasb, Faresban, and Gonbad-e-Kabood springs, 85, 80, and 70% are drained during period of baseflow, respectively, whereas the quickflow periods have minor importance in some springs. Based on the Coutagne’s equation results, it can be concluded that the catchment of the Famaasb and Gonbad-e-Kabood springs have a karstified saturation zone with drainage channels that provide a rapid discharge with little storage capacity. At Gian catchment area, the initial discharge is not as rapid as karstification but is fairly homogeneous throughout the aquifer.  相似文献   
148.
Soil samples were collected from the agricultural lands of Golestan province, north of Iran and analyzed for 24 elements including eight toxic metals of As, Cd, Co, Cr, Cu, Pb, Se and Zn. Electrical conductivity, pH, organic matter, soil texture, calcium carbonate content as well as soil cation exchange capacity were also determined. The possible sources of metals are identified with multivariate analysis such as correlation analysis, principal component analysis (PCA), and cluster analysis. In addition, enrichment factors were used to quantitatively evaluate the influences of agricultural practice on metal loads to the surface soils. The PCA and cluster analysis studies revealed that natural geochemical background are the main source of most elements including Al, Co, Cr, Cs, Cu, Fe, K, Li, Ni, Pb, V and Zn in the arable soils of the province (more than 90 %), however, those soils which have been developed on the mafic and metamorphic rocks were considerably contributed on metal concentration (43 %). Calcium and Sr were constituents of calcareous rocks and Na and S were mainly controlled by saline soils in the north of the province. Loess deposits was also accounting for high levels of selenium concentration. Phosphorous was mostly related to application of P-fertilizers and organophosphate pesticides. The comparison of metal load and enrichment factor for dry and irrigated farmlands showed that Cd, Co, Pb, Se and Zn had higher concentrations in the irrigated lands where considerable amounts of agrochemicals had been applied. However, it also found that proximity of arable lands to urban and industrial areas resulted in higher Pb and Cd values in the irrigated agricultural sources relative to dry ones.  相似文献   
149.
Geotechnical and Geological Engineering - The Leeb hardness test is a non-destructive and portable technique that can be used both in the laboratory and in-field applications. The main purpose of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号