首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
地球物理   18篇
地质学   14篇
海洋学   1篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   5篇
  2011年   1篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1998年   1篇
  1987年   1篇
排序方式: 共有33条查询结果,搜索用时 0 毫秒
31.
The maximum likelihood estimation method is applied to study the geographical distribution of earthquake hazard parameters and seismicity in 28 seismogenic source zones of NW Himalaya and the adjoining regions. For this purpose, we have prepared a reliable, homogeneous and complete earthquake catalogue during the period 1500–2010. The technique used here allows the data to contain either historical or instrumental era or even a combination of the both. In this study, the earthquake hazard parameters, which include maximum regional magnitude (M max), mean seismic activity rate (λ), the parameter b (or β?=?b/log e) of Gutenberg–Richter (G–R) frequency-magnitude relationship, the return periods of earthquakes with a certain threshold magnitude along with their probabilities of occurrences have been calculated using only instrumental earthquake data during the period 1900–2010. The uncertainties in magnitude have been also taken into consideration during the calculation of hazard parameters. The earthquake hazard in the whole NW Himalaya region has been calculated in 28 seismogenic source zones delineated on the basis of seismicity level, tectonics and focal mechanism. The annual probability of exceedance of earthquake (activity rate) of certain magnitude is also calculated for all seismogenic source zones. The obtained earthquake hazard parameters were geographically distributed in all 28 seismogenic source zones to analyze the spatial variation of localized seismicity parameters. It is observed that seismic hazard level is high in Quetta-Kirthar-Sulaiman region in Pakistan, Hindukush-Pamir Himalaya region and Uttarkashi-Chamoli region in Himalayan Frontal Thrust belt. The source zones that are expected to have maximum regional magnitude (M max) of more than 8.0 are Quetta, southern Pamir, Caucasus and Kashmir-Himanchal Pradesh which have experienced such magnitude of earthquakes in the past. It is observed that seismic hazard level varies spatially from one zone to another which suggests that the examined regions have high crustal heterogeneity and seismotectonic complexity.  相似文献   
32.
Natural Hazards - On January 24, 2020, a severe earthquake of magnitude Mw 6.8 hit the Sivrice district of Elaz?? province at 20:55 (17:55 GMT) local time. This earthquake caused...  相似文献   
33.
In this paper, we present a relation between the earthquake occurrence and electric resistivity structures in the crust, in West Anatolia and the Thrace region of Turkey. The relationship between magnetotelluric georesistivity models and crustal earthquakes in West Anatolia, during a period from 1900 to 2000, is investigated. It is found that most of the large crustal earthquakes occurred in and around the areas of the highest electrical resistivity in the upper crust, although rare small magnitude earthquakes are observed in some parts of the conductive lower crust in West Anatolian extensional terrain. The high-resistivity zones may represent rocks that are probably mechanically strong enough to permit sufficient stress to accumulate for earthquakes to occur in western Anatolia and the Thrace region. However, some recent studies state that the generation of a large earthquake is not only a pure mechanical process, but is closely related to fluid existence. We also reviewed recent world-wide researches including results from the Anatolian data for the first time and discussed all general findings in combination. Our findings show that the boundary between the resistive upper crust and the conductive lower crust correlates well with the cutout depth of the seismicity in West Anatolia and Thrace. This boundary is also attributed to the fluid bearing brittle–ductile transition zone in world literature. Fluid migration from the conductive lower crust to the resistive upper crust may contribute the seismicity in resistive zones. Alternatively, the upper–lower crust boundary may act as a stress concentrator and fluids may help to release strain energy in brittle parts of lower crust, by small magnitude earthquakes, whereas they may help in focusing strain in mechanically strong and electrically resistive zones for large earthquakes to occur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号