首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32636篇
  免费   537篇
  国内免费   386篇
测绘学   863篇
大气科学   2935篇
地球物理   6710篇
地质学   11462篇
海洋学   2504篇
天文学   7026篇
综合类   78篇
自然地理   1981篇
  2020年   222篇
  2019年   238篇
  2018年   544篇
  2017年   553篇
  2016年   775篇
  2015年   506篇
  2014年   727篇
  2013年   1517篇
  2012年   814篇
  2011年   1116篇
  2010年   973篇
  2009年   1333篇
  2008年   1156篇
  2007年   1021篇
  2006年   1133篇
  2005年   949篇
  2004年   932篇
  2003年   924篇
  2002年   926篇
  2001年   777篇
  2000年   811篇
  1999年   695篇
  1998年   649篇
  1997年   681篇
  1996年   592篇
  1995年   547篇
  1994年   503篇
  1993年   440篇
  1992年   426篇
  1991年   422篇
  1990年   430篇
  1989年   404篇
  1988年   385篇
  1987年   474篇
  1986年   440篇
  1985年   472篇
  1984年   563篇
  1983年   570篇
  1982年   508篇
  1981年   498篇
  1980年   462篇
  1979年   440篇
  1978年   452篇
  1977年   399篇
  1976年   361篇
  1975年   357篇
  1974年   409篇
  1973年   392篇
  1972年   245篇
  1971年   224篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
Abstract– Sacramento Wash 005 (SaW) 005, Meteorite Hills 00428 (MET) 00428, and Mount Howe 88403 (HOW) 88403 are S‐rich Fe,Ni‐rich metal meteorites with fine metal structures and homogeneous troilite. We compare them with the H‐metal meteorite, Lewis Cliff 88432. Phase diagram analyses suggest that SaW 005, MET 00428, and HOW 88403 were liquids at temperatures above 1350 °C. Tridymite in HOW 88403 constrains formation to a high‐temperature and low‐pressure environment. The morphology of their metal‐troilite structures may suggest that MET 00428 cooled the slowest, SaW 005 cooled faster, and HOW 88403 cooled the quickest. SaW 005 and MET 00428 contain H‐chondrite like silicates, and SaW 005 contains a chondrule‐bearing inclusion that is texturally and compositionally similar to H4 chondrites. The compositional and morphological similarities of SaW 005 and MET 00428 suggest that they are likely the result of impact processing on the H‐chondrite parent body. SaW 005 and MET 00428 are the first recognized iron‐ and sulfide‐rich meteorites, which formed by impact on the H‐chondrite parent body, which are distinct from the IIE‐iron meteorite group. The morphological and chemical differences of HOW 88403 suggest that it is not from the H‐chondrite body, although it likely formed during an impact on a chondritic parent body.  相似文献   
993.
Abstract– 40Ar/39Ar dating of potassium feldspar (primary spherulitic‐blocky and secondary idiomorphic K‐feldspar) separated from impact‐metamorphosed gneiss found near Videix in the western central part of the Rochechouart impact structure (NW Massif Central, France) yielded a Rhaetian combined age of 201 ± 2 Ma (2σ), indistinguishable within uncertainty from the age of the Triassic/Jurassic boundary. Ballen quartz intergrown with the primary K‐feldspar indicates post‐shock temperatures exceeding approximately 1000 °C that affected the precursor gneiss. Geochemically, both feldspar types represent essentially pure potassium end‐members. Apart from the approximately 15 km diameter impact deposit area, the youngest crystallization age known for basement rocks in this part of the Massif Central is approximately 300 Ma. No endogenic magmatic‐thermal events are known to have occurred later in this region. The K‐feldspar recrystallized from local feldspar melts and superimposed post‐shock hydrothermal crystallization, probably within some thousands of years after the impact. It is, therefore, suggested that the 40Ar/39Ar age for the Videix gneiss (as a potassic “impact metasomatite”) dates the Rochechouart impact, in consistence with evidence for K‐metasomatism in the Rochechouart impactites. The new age value is distinctly younger than the previously obtained Karnian–Norian age for Rochechouart and, thus, contradicts the Late Triassic multiple impact theory postulated some years ago. In agreement with the paleogeographic conditions in the western Tethys domain around the Triassic/Jurassic boundary, the near‐coastal to shallow marine Rochechouart impact is compatible with the formation of seismites and tsunami deposits in the latest Triassic of the British Isles and possible related deposits in other parts of Europe.  相似文献   
994.
(i) The controversy of dynamo or primordial origin of galactic magnetic fields is summarized and extended to show that the dynamo theory appears to fail. However, much more important than their origin are the characteristics of the fields and their interactions with the gas and cosmic rays. (ii) A passive magnetic field frozen into a turbulent plasma is not dissipated like a cloud of smoke (turbulent or eddy diffusion) as believed previously. On the contrary it is amplified exponentially until, within a few eddy periods, either the growing magnetic stresses halt the turbulence or the field becomes chaotic. Even if the Petschek reconnection mechanism operates, the field is always disordered to a scale <0.1L, whereL is the eddy dimension. The investigation may at last provide a semi-quantitative deductive theory of hydromagnetic eddies. (iii) It is concluded that the gas motions observed in our Galaxy are not convective but are mainly hydromagnetic waves or oscillations, with the magnetic field in control. The significance of this result is discussed in connection with the overall gas velocity field, the creation of stars and stellar systems, and with the origin and distribution of cosmic rays.  相似文献   
995.
There have been many models describing the evolution of our sister planet. As information from the intensive exploration by the Apollo program has accumulated, more constraints on these models have emerged. We specifically consider a hypothesis in which there is a present day asthenosphere, a heat flow between 24 and 32 ergs cm−2 s−1 and a crust which developed early in the Moon's history by melting of the outer 100 to 200 km. We have also introduced a constraint which keeps the deep interior below the Curie point of iron for the first 1 to 1.5 b.y. so that it is able to carry the memory of an early field which magnetized the cold interior. The magnetized mare basalts and breccias cooled in this field from above the Curie point of iron (≈800°C.) and acquired a thermoremanent magnetization. While fully recognizing that some of these constraints are subject to other interpretations, it is nevertheless instructive to consider the thermal history that follows from such a model. First, the initial temperature must be high enough to cause melting in the outer 100–200 km, while the interior temperature must be cool enough to be below the Curie point of iron. Second, the crust in this model cools off so rapidly that the mare basalts could not be developed as late as indicated in lunar history. Rather we propose that the mare basalts result from local remelting associated with giant impacts. Third, the Moon's deep interior must have warmed up enough to erase the memory of the ancient magnetic field from the deep interior and to develop the asthenosphere which has been detected seismically. Fourth, if this asthenosphere is real, the viscosity of the Moon as a function of temperature must be high enough to have prevented convective cooling until the temperature increased to a value near the solidus temperature. At this temperature, the Moon would then likely cool by convection in the solid state. It is, therefore, a consequence of this model that solid body convection tool place late in lunar history. This may well have contributed to the lunar center of figure and center of mass offset, to the low order terms in its gravity field and to, its disequilibrium moment of inertia differences.  相似文献   
996.
Recent developments in solar dynamo and other theories of magnetic fields and convection are discussed and extended. A basic requirement of these theories, that surplus fields are eliminated by turbulent or eddy diffusion, is shown to be invalid. A second basic requirement, that strong surface fields are created by granule or supergranule motions, is shown to be improbable. Parker's new thin-filament dynamo, based on the Petschek mechanism, is shown to provide the alternative possibilities: either the magnetic fields halt all convection or a steady state is reached in which the fields are a tangle of long, thin filaments. From the above and other considerations it is concluded that the dynamo and related diffuse-field theories are unacceptable, that solar magnetic fields are not dominated by convection, and that all the fields emerge as strong, concentrated fields (flux ropes) which were wound and twisted from a permanent, primordial field. The discussion may, incidentally, provide the physical elements of a deductive theory of hydromagnetic convection.  相似文献   
997.
Material is ejected from impact craters in ballastic trajectories; it impacts first near the crater rim and then at progressively greater ranges. Ejecta from craters smaller than approximately 1 km is laid predominantly on top of the surrounding surface. With increasing crater size, however, more and more surrounding surface will be penetrated by secondary cratering action and these preexisting materials will be mixed with primary crater ejecta. Ejecta from large craters and especially basin forming events not only excavate preexisting, local materials, but also are capable of moving large amounts of material away from the crater. Thus mixing and lateral transport give rise to continuous deposits that contain materials from within and outside the primary crater. As a consequence ejecta of basins and large highland craters have eroded and mixed highland materials throughout geologic time and deposited them in depressions inside and between older crater structures.Because lunar mare surfaces contain few large craters, the mare regolith is built up by successive layers of predominantly primary ejecta. In contrast, the lunar highlands are dominated by the effects of large scale craters formed early in lunar history. These effects lead to thick fragmental deposits which are a mixture of primary crater material and local components. These deposits may also properly be named regolith though the term has been traditionally applied only to the relatively thin fine grained surficial deposit on mare and highland terranes generated during the past few billion year. We believe that the surficial highland regolith - generated over long periods of time - rests on massive fragmental units that have been produced during the early lunar history.  相似文献   
998.
The acoustic overstability in a polytropic plane-parallel atmosphere with superadiabatic temperature gradient and radiative dissipation is demonstrated for optically thick disturbances. The periods of oscillation are found to be in the range 250–480 s and the associated wavelength of the order of 4000 km. The five-minute oscillations in the solar surface are attributed to self-excited sound waves in a layer in the subphotospheric convection zone of about 1000 km thickness.  相似文献   
999.
From simultaneous spectroscopic and photometric observations of the T Tauri star RU Lup, which was followed for nine consecutive nights, it was found that most if not all of the light variations observed on this star were caused by variable circumstellar extinction. The character and the time-scale of the variations imply that the variations are due to dust concentrations of stellar dimension crossing the line of sight to the star. The implications of this interpretation and its possible bearing on problems of protoplanetary systems are discussed.  相似文献   
1000.
G.H. Rieke 《Icarus》1975,26(1):37-44
Infrared observations of Saturn from 5 to 40 μm are described. There is intense limb brightening at 12.35 μm over the southern polar cap. The C ring is anomalously bright at 10 and 20 μm and has bluer (hotter) colours than the A and B rings. The ring spectra have been extrapolated beyond 40 μm and subtracted from low-resolution far-infrared measurements to show that the far-infrared spectrum of the disk of Saturn is qualitatively similar to that of Jupiter and that Saturn radiates 2.5 ± 0.6 times the energy it absorbs from the Sun.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号