首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   0篇
地球物理   71篇
地质学   39篇
海洋学   1篇
自然地理   3篇
  2015年   1篇
  2014年   3篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  2002年   9篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   7篇
  1990年   9篇
  1989年   10篇
  1988年   5篇
  1987年   7篇
  1986年   7篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1969年   2篇
  1967年   2篇
排序方式: 共有114条查询结果,搜索用时 46 毫秒
21.
We present the stratigraphy, lithology, volcanology, and age of the Acahualinca section in Managua, including a famous footprint layer exposed in two museum pits. The ca. 4-m-high walls of the main northern pit (Pit I) expose excellent cross sections of Late Holocene volcaniclastic deposits in northern Managua. We have subdivided the section into six lithostratigraphic units, some of which we correlate to Late Holocene eruptions. Unit I (1.2 m thick), chiefly of hydroclastic origin, begins with the footprint layer. The bulk is dominated by mostly massive basaltic-andesitic tephra layers, interpreted to represent separate pulses of a basically phreatomagmatic eruptive episode. We correlate these deposits based on compositional and stratigraphic evidence to the Masaya Triple Layer erupted at Masaya volcano ca. 2,120 ± 120 a B.P.. The eruption occurred during the dry season. A major erosional channel unconformity up to 1 m deep in the western half of Pit I separates Units II and I. Unit II begins with basal dacitic pumice lapilli up to 10 cm thick overlain by a massive to bedded fine-grained dacitic tuff including a layer of accretionary lapilli and pockets of well-rounded pumice lapilli. Angular nonvesicular glass shards are interpreted to represent hydroclastic fragmentation. The dacitic tephra is correlated unequivocally with the ca. 1.9-ka-Plinian dacitic Chiltepe eruption. Unit III, a lithified basaltic-andesitic deposit up to 50 cm thick and extremely rich in branch molds and excellent leaf impressions, is correlated with the Masaya Tuff erupted ca. 1.8 ka ago. Unit IV, a reworked massive basaltic-andesitic deposit, rich in brown tuff clasts and well bedded and cross bedded in the northwestern corner of Pit I, cuts erosionally down as far as Unit I. A poorly defined, pale brown mass flow deposit up to 1 m thick (Unit V) is overlain by 1–1.5 m of dominantly reworked, chiefly basaltic tephra topped by soil (Unit VI). A major erosional channel carved chiefly between deposition of Units II and I may have existed as a shallow drainage channel even prior to deposition of the footprint layer. The swath of the footprints is oriented NNW, roughly parallel to, and just east of, the axis of the channel. The interpretation of the footprint layer as the initial product of a powerful eruption at Masaya volcano followed without erosional breaks by additional layers of the same eruptive phase is strong evidence that the group of 15 or 16 people tried to escape from an eruption.  相似文献   
22.
The relative size of glass rims coating crystals in the matrix ash provides a semi-quantitative measure of abrasion of ash grains in pyroclastic flows. Median abrasion indices (= areacrystal / areaglass rim) are 8.4 to 18.5 in Laacher See pyroclastic flow units but only 4 to 6.3 in assocciated fallout, showing stronger abrasion of ash particles in the pyroclastic flows. All pyroclasts undergo strong attrition in the vent but clasts in pyroclastic flows undergo a second major phase of abrasion during high-energy near-vent flow. Abrasion of ash particles is weaker during lower-energy higher-strength motion further downstream, suggesting that high contents of fine ash in distal deposits are due to diminishing elutriation rather than high rate of attrition.
Zusammenfassung Die relative Größe von Glassäumen um Kristalle in der Matrix-Asche kann als semi-quantitatives Maß für den Abrieb von Aschepartikeln in pyroklastischen Strömen benutzt werden. Median-Werte des Abriebs-Index (= Flächekristall / FlächeGlassaum) betragen 8,4 bis 18,5 in pyroklastischen Fließeinheiten am Laacher See. Abriebs-Indices stratigraphisch assoziierter Bims-Fallablagerungen liegen bei nur 4 bis 6,3; dies belegt einen höheren Abrieb von Aschepartikeln in den pyroklastischen Strömen. Alle Pyroklasten erfahren gemeinsam starken Abrieb im Schlot, aber Partikel in pyroklastischen Strömen durchlaufen eine zweite Phase starken Abriebs während des hochenergetischen Transports im schlotnahen Bereich. Bei niedriger-energetischem Fließen mit wachsender Bingham-Festigkeit weiter talabwärts wird der Partikelabrieb schwächer. Hohe Gehalte an feiner Asche in distalen Fließeinheiten sind also eher auf schwächer werdende Elutriierung als auf stärkeren Abrieb zurückzuführen.

Résumé La dimension relative des enduits vitreux qui enrobent les cristaux dans les dépôts de cendres volcaniques peut être utilisée comme mesure semiquantitative de l'abrasion des particules dans les courants pyroclastiques. Au Laacher See les indices d'abrasion (surface du cristal/surface de l'enduit vitreux) sont de 8,4 à 18,5 dans les coulées pyroclastiques et seulement de 4 à 6,3 dans les sédiments formés par retombée, qui leur sont interstratifiés; les particules de cendre ont donc subi une abrasion plus forte dans les coulées. Tous les pyroclastes subissent une forte abrasion dans le cratère; mais dans les coulées pyroclastiques, ils subissent une deuxième action d'abrasion au cours de leur transport en milieu de haute énergie, à proximité du cratère. Dans les conditions de plus basse énergie qui régnent plus en aval, l'abrasion est moins forte; on en déduit que la forte teneur en fines dans les dépôts distaux résulte d'une diminution de l'élutriation plutôt que d'une forte action d'abrasion.

, . ( / ) 8,4 18,5 . . , . , . ( ), .
  相似文献   
23.
Accretionary lapilli are common in fine-grained pyroclastic flow and surge deposits and related co-ignimbrite/co-surge ash layers of Laacher See volcano. Two morphologically different types are distin-guished: (1) Rim-type lapilli are composed of a coarse-grained core surrounded by a fine-grained rim. Rims are internally graded or made up of several layers of alternating fine and very-fine grained ash. (2) Core-type lapilli lack fine-grained rims. Field relationships, internal, and grain-size characteristics are specific to accretionary lapilli from different types of tephra deposits. Accretionary lapilli may therefore be a helpful tool to infer the origin of tephra of different origin. In co-ignimbrite ashfall, accretionary lapilli are generally concentrated at the base, whereas pyroclastic flow and surge deposits contain lapilli in the upper parts of individual, thin-bedded layers. Rim-type lapilli are found in pyroclastic flow and surge deposits up to 4 km from the source. Core-type lapilli occur at greater distances or are associated with vesiculated tuffs where they are within 1 km from the vent. Accretionary lapilli from co-ignimbrite/co-surge ash show open framework textures and edge-to-face contacts of individual ash particles. Vesicularity is generally low but the overall porosity of 40% to 50% results in an average density of 1200 kg/m3. Accretionary lapilli in pyroclastic flow and surge deposits are more densely packed and platy particles are often in face-to-face contacts. Vesicularity of those from pyroclastic flow deposits is significantly higher; the overall porosity is about 30% to 40% and the average density 1600 kg/m3. Grain-size analyses show that the accretionary lapilli in co-ignimbrite/co-surge ashfall deposits are the most fine-grained with a median (Md) of 20 to 30 m and a maximum grain size of 250 to 350 m. Accretionary lapilli from pyroclastic flow deposits have intermediate Md-values of 30 to 50 m and a maximum grain size of 350 to 500 m. Those of surge deposits are the coarsest grained with Md-values of 30 to >63 m and a maximum grain size up to 2 mm.  相似文献   
24.
Rihm  Jacobs  Krastel  Schmincke  & Alibes 《地学学报》1998,10(3):121-125
Volcanic structures on the seafloor off the NW African coast between 25°N and 32°N were imaged by GLORIA side scan sonar and SIMRAD EM12 multibeam bathymetry. The newly discovered Las Hijas Seamounts, located 70 km south-east of Hierro, are interpreted as young volcanic edifices. Their location is consistent with the spacing and timing of propagation of volcanism of the Canary Archipelago and may represent future sites of volcanic islands.  相似文献   
25.
The Canary Island primitive basaltic magmas are thought to be derived from an HIMU-type upwelling mantle containing isotopically depleted (NMORB)-type component having interacted with an enriched (EM)-type component, the origin of which is still a subject of debate. We studied the relationships between Ni, Mn and Ca concentrations in olivine phenocrysts (85.6–90.0 mol.% Fo, 1,722–3,915 ppm Ni, 1,085–1,552 ppm Mn, 1,222–3,002 ppm Ca) from the most primitive subaerial and ODP Leg 157 high-silica (picritic to olivine basaltic) lavas with their bulk rock Sr–Nd–Pb isotope compositions (87Sr/86Sr = 0.70315–0.70331, 143Nd/144Nd = 0.51288–0.51292, 206Pb/204Pb = 19.55–19.93, 207Pb/204Pb = 15.60–15.63, 208Pb/204Pb = 39.31–39.69). Our data point toward the presence of both a peridotitic and a pyroxenitic component in the magma source. Using the model (Sobolev et al. in: Science 316:412–417, 2007) in which the reaction of Si-rich melts originated during partial melting of eclogite (a high pressure product of subducted oceanic crust) with ambient peridotitic mantle forms olivine-free reaction pyroxenite, we obtain an end member composition for peridotite with 87Sr/86Sr = 0.70337, 143Nd/144Nd = 0.51291, 206Pb/204Pb = 19.36, 207Pb/204Pb = 15.61 and 208Pb/204Pb = 39.07 (EM-type end member), and pyroxenite with 87Sr/86Sr = 0.70309, 143Nd/144Nd = 0.51289, 206Pb/204Pb = 20.03, 207Pb/204Pb = 15.62 and 208Pb/204Pb = 39.84 (HIMU-type end member). Mixing of melts from these end members in proportions ranging from 70% peridotite and 30% pyroxenite to 28% peridotite and 72% pyroxenite derived melt fractions can generate the compositions of the most primitive Gran Canaria shield stage lavas. Combining our results with those from the low-silica rocks from the western Canary Islands (Gurenko et al. EPSL 277:514–524, 2009), at least four distinct components are required. We propose that they are (1) HIMU-type pyroxenitic component (representing recycled ocean crust of intermediate age) from the plume center, (2) HIMU-type peridotitic component (ancient recycled ocean crust stirred into the ambient mantle) from the plume margin, (3) depleted, MORB-type pyroxenitic component (young recycled oceanic crust) in the upper mantle entrained by the plume, and (4) EM-type peridotitic component from the asthenosphere or lithosphere above the plume center.  相似文献   
26.
Rare earth element (REE) and other trace element compositions of 16 lavas from all historic and 2 prehistoric eruptions on 5 islands of the Azores Archipelago show notable intra-and inter-island differences. Fe enrichment and “compatible” element depletion due to fractional crystallization have been superimposed on variations established in the source area. Fractionation of La/Sm, U/Th, K/Na and “large ion lithophile” (LIL) element abundances are probably related to variable fusion of a source peridotite whose LIL element distribution cannot be exactly specified in view of its possible heterogeneity. Relative light-REE enrichment in basalt appears greatest on the “potassic” island São Miguel, the more sodic island Fayal and one lava from Pico, and least in basalts from the “sodic” islands Terceira, São Jorge and Pico. This variation is matched by most other LIL elements, although P shows unexpected enrichment in Terceira lavas, otherwise the least LIL element-enriched and most heavy-REE-enriched. Upper mantle phase chemistry is probably critical in establishing the patterns. In particular, P—REE covariance may reflect phase stabilities of apatite and (P-bearing) garnet in the upper mantle. Distribution patterns of REE in the historic lavas are similar to those of basalts from the Atlantic median rift at the crest of the Azores “platform”. Transition to light-REE-depleted rift-erupted basalts to the southwest is believed to be step-wise with increasing water depth, possibly indicating retention of a light-REE-rich phase in the residue from partial fusion as intersection of geotherm and peridotite solidus occur at lower pressures. The source mantle for the Azores basalts is probably light-REE- and LIL element-enriched but we find no evidence so far to suggest its emplacement by thermal “plume” activity.  相似文献   
27.
The relationship between rift zones and flank instability in ocean island volcanoes is often inferred but rarely documented. Our field data, aerial image analysis, and 40Ar/39Ar chronology from Anaga basaltic shield volcano on Tenerife, Canary Islands, support a rift zone—flank instability relationship. A single rift zone dominated the early stage of the Anaga edifice (~6–4.5 Ma). Destabilization of the northern sector led to partial seaward collapse at about ~4.5 Ma, resulting in a giant landslide. The remnant highly fractured northern flank is part of the destabilized sector. A curved rift zone developed within and around this unstable sector between 4.5 and 3.5 Ma. Induced by the dilatation of the curved rift, a further rift-arm developed to the south, generating a three-armed rift system. This evolutionary sequence is supported by elastic dislocation models that illustrate how a curved rift zone accelerates flank instability on one side of a rift, and facilitates dike intrusions on the opposite side. Our study demonstrates a feedback relationship between flank instability and intrusive development, a scenario probably common in ocean island volcanoes. We therefore propose that ocean island rift zones represent geologically unsteady structures that migrate and reorganize in response to volcano flank instability.Editorial responsibility: T. DruittThis revised version was published online in February 2005 with typographical corrections and a changed wording.  相似文献   
28.
The Late Miocene to Pleistocene evolution of the northwestern Iblean plateau (Sicily) is marked by a complex interplay of subaerial and submarine volcanism, subsidence and uplift, eustatic sea-level changes, and shallow-water carbonate and clay sedimentation. Volcanic activity occurred in distinct phases, differing drastically in volume, chemical composition, eruptive and depositional sites, and eruptive mechanisms. Six of the newly defined formations in the northwestern Iblean plateau are either entirely volcanic or contain significant amounts of volcanics. The eastern part of a shallow marine basin was filled completely by Late Pliocene tholeiitic lava flows (Militello Formation) that had advanced subaerially from the south–southeast. Lava deltas advanced southwestward on top of earlier pillow breccia debris flow deposits intertongued with soft Trubi marls and chalks. True submarine eruptions (Monte Caliella Formation) simultaneously produced densely packed pillow piles up to 250?m thick. Inferred water depths based on volcanologic and paleoecologic criteria of interbedded and overlying calcarenites agree well. Subsequent alkalic, more explosive Pleistocene volcanic eruptions (Poggio Vina Formation) changed from initially submarine to late subaerial indicating growth of edifices above sea level, sea-level rise, or land Subsidence by ca. 50?m. They and the latest Militello volcanics are interlayed with minor shallow-water calcarenites. The Poggio Vina volcanics were submerged during a second sea-level rise amounting to up to 100?m. The sea was generally shallow, i.e., <100?m deep, throughout most of the Late Pliocene and early Pleistocene. The Poggio Vina volcanism took place prior to the Emilian transgression. The sea-level rise might represent a continuation of the subsidence trend that caused the Lower Pliocene Trubi marine basin. Subaerial conditions were reached twice in the approximate time interval 1.9–1.6?Ma during phases of voluminous volcanism that outpaced subsidence. Uplift of approximately 600?m (Palagonia) to 950?m (Monte Lauro) occurred subsequent to emplacement of the Pleistocene alkalic volcanics. Bioclastic carbonates deposited concurrently with uplift drape a major fault scarp east of Palagonia with uplift rates in excess of 0.5?mm/a, provided most uplift occurred during ca. 1?Ma. Basinning continued beneath the half graben of the present Piana di Catania where volcanics several hundreds of meters thick – at least some of them alkalic in composition – occur at a depth of approximately 500–1500?m below the present surface. Quaternary uplift of the northwestern Iblean plateau may have been due to a major phase of underplating or rise of partially melted mantle. Composition of the volcanic rocks, total volume, and mass eruptive rates are well-correlated. The volumetrically very minor highly mafic Messinian nephelinites may have formed in response to Messinian lithosphere unloading following draining of the Mediterranean resulting in very low-degree partial melting. The nephelinitic to basanitic Poggio Inzerillo and Poggio Pizzuto pillow lavas may herald a major mantle decompression event, possibly the rise of a mantle diapir. The remarkably homogeneous bronzite-bearing, relatively SiO2-rich Militello tholeiites, representing a very short-lived but voluminous eruptive phase, resemble E-MORB and reflect a major high-degree partial melting event. The Pleistocene Poggio Vina alkali basalts to nephelinites resemble the late-stage alkalic phase in intraplate magmatic systems. The Iblean cycle of a brief but intense phase of widespread tholeiites followed by alkali basaltic volcanism resembles that of Etna Volcano where widespread basal tholeiites erupted at approximately 0.5?Ma and were followed by (evolved) alkali basaltic lavas. The immediate cause-and-effect relationship between volcanism and tectonism remains speculative.  相似文献   
29.
Major and trace element analyses for 103 volcanoes of the Quaternary West Eifel volcanic field show the lavas to be dominantly primitive (MgO>7 wt.%) and potassic (Na2O/K2O∼1). The rocks are divided into (1) a foidite (F)-suite, volumetrically dominant and consisting of four types: leucitites and nephelinites, melilite-bearing foidites, olivine-free foidites, sodalite-bearing melilite-free foidites, and (2) a younger olivine-nephelinite and basanite (ONB)-suite, concentrated in the southeastern part of the field. Dominantly cpx-phyric F-suite magmas differ from the dominantly ol-phyric ONB-suite mainly in higher K2O/ Na2O and CaO/Al2O3-ratios, higher Rb, Cu, H2O, CO2 and LREE concentrations and slightly lower Sr, Ni and Y contents. Most magmas have fractionated small amounts of olivine, clinopyroxene, and minor phlogopite. Systematic compositional variations within volcanoes or volcano groups are rare. Five more differentiated volcanoes (2 tephrites, 3 phonolites) occur in the center of the field. Their magmas are interpreted to have formed by fractionation within crustal magma chambers. Chemical differences between primary magmas (43% of volcanoes sampled) within both suites can be explained by different degrees of crystal fractionation at high pressures in the ascending magma column and possibly by varying degrees of partial melting (about 2–8%) in a garnetlherzolite mantle source. Distinct isotope ratios, parallel element variations, and different ratios of similarly incompatible elements, however, indicate a heterogeneous mantle beneath the West Eifel. The F-suite magmas originated from a mantle source more strongly enriched in alkalis and incompatible elements than the ONB-suite mantle source. The following model is proposed, based also on experimental studies and geophysical data: Within a large low velocity body of garnet-lherzolite, enriched in fluids and LIL elements (metasomatized mantle) between about 50 and 150 km depth, two different magma types were produced at different depths. Above a detachment level at about 50 km depth, these magmas rose to different stagnation levels or rapidly directly to the surface along vertical, dominantly NW-SE orientated fissures. The F-suite magmas probably formed in a phlogopite-bearing, CO2-rich, strongly metasomatized source at about 100 km, the ON-Bmagmas from an amphibole-bearing, CO2-poorer melting anomaly at about 60–75 km depth.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号