首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35203篇
  免费   1606篇
  国内免费   1720篇
测绘学   1418篇
大气科学   3495篇
地球物理   7483篇
地质学   13369篇
海洋学   3056篇
天文学   6884篇
综合类   470篇
自然地理   2354篇
  2022年   412篇
  2021年   601篇
  2020年   515篇
  2019年   584篇
  2018年   853篇
  2017年   814篇
  2016年   1020篇
  2015年   769篇
  2014年   996篇
  2013年   1706篇
  2012年   1076篇
  2011年   1331篇
  2010年   1177篇
  2009年   1522篇
  2008年   1282篇
  2007年   1136篇
  2006年   1248篇
  2005年   1034篇
  2004年   963篇
  2003年   961篇
  2002年   966篇
  2001年   851篇
  2000年   874篇
  1999年   740篇
  1998年   689篇
  1997年   714篇
  1996年   617篇
  1995年   574篇
  1994年   522篇
  1993年   458篇
  1992年   445篇
  1991年   439篇
  1990年   438篇
  1989年   417篇
  1988年   402篇
  1987年   473篇
  1986年   443篇
  1985年   465篇
  1984年   559篇
  1983年   561篇
  1982年   503篇
  1981年   491篇
  1980年   449篇
  1979年   435篇
  1978年   448篇
  1977年   394篇
  1976年   355篇
  1975年   355篇
  1974年   405篇
  1973年   389篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
72.
The Ivrea-Verbano Zone in northern Italy represents a section through the lower continental crust which has been tilted and emplaced into its present position during the Alpine orogeny. Recent and on-going structurally-oriented geological mapping in this region is providing new information about the geometry of the complex. The central part of the zone is dominated by a large basic complex (the 'mafic formation') which is intrusive into the surrounding gneisses. The foliation within the envelope of gneisses is deflected around the intrusive complex as if by ballooning, but in the region south-west of Monte Capio both units are folded together into a tight to isoclinal steeply plunging fold with an amplitude of c. 10 km. This fold locally inverts the stratigraphy of the layered basic group of the complex, and is thought to be the result of gravitational collapse following intrusion and inflation of a large magma body into the lower crust.
Several high-temperature shear zones have now been traced within the country rock for distances up to 20 km. The geometry of these, and their relationship to the basic complex suggests that at least some of the extensional collapse of the mafic body is related to uplift caused by intrusion of this body.
Close parallels can be drawn between the observed structure in the Ivrea-Verbano Zone (after removing the effects of late, low-temperature faulting and folding related to emplacement of the rocks into their present position), and those inferred from deep seismic reflection profiling in areas of current extension such as parts of the US Basin and Range province.  相似文献   
73.
74.
Current carrying magnetic fields which penetrate sunspots can be unstable to current convective modes caused by the large gradient of electrical conductivity. The linear growth rates and wavelengths of the unstable modes are found. The unstable modes produce fine-scale vortices perpendicular to the magnetic field, which overshoot well into the solar corona. The modes provide a turbulent vorticity source at the photospheric footpoints of the field. This can cause braiding and reconnection of the coronal magnetic field. The modes twist the coronal magnetic field into loops with a typical radius of 200 km, consistent with recent X-ray observations.  相似文献   
75.
76.
Abstract Petrological, oxygen isotope and 40Ar/39Ar studies were used to constrain the Tertiary metamorphic evolution of the lower tectonic unit of the Cyclades on Tinos. Polyphase high-pressure metamorphism reached pressures in excess of 15 kbar, based on measurements of the Si content in potassic white mica. Temperatures of 450–500° C at the thermal peak of high-pressure metamorphism were estimated from critical metamorphic assemblages, the validity of which is confirmed by a quartz–magnetite oxygen isotope temperature of 470° C. Some 40Ar/39Ar spectra of white mica give plateau ages of 44–40 Ma that are considered to represent dynamic recrystallization under peak or slightly post-peak high-pressure metamorphic conditions. Early stages in the prograde high-pressure evolution may be documented by older apparent ages in the high-temperature steps of some spectra. Eclogite to epidote blueschist facies mineralogies were partially or totally replaced by retrograde greenschist facies assemblages during exhumation. Oxygen isotope thermometry of four quartz–magnetite pairs from greenschist samples gives temperatures of 440–470° C which cannot be distinguished from those deduced for the high-pressure event. The exhumation and overprint is documented by decreasing ages of 32–28 Ma in some greenschists and late-stage blueschist rocks, and ages of 30–20 Ma in the lower temperature steps of the Ar release patterns of blueschist micas. Almost flat parts of Ar–Ar release spectra of some greenschist micas gave ages of 23–21 Ma which are assumed to represent incomplete resetting caused by a renewed prograde phase of greenschist metamorphism. Oxygen isotope compositions of blueschist and greenschist facies minerals show no evidence for the infiltration of a δ18O-enriched fluid. Rather, the compositions indicate that fluid to rock ratios were very low, the isotopic compositions being primarily controlled by those of the protolith rocks. We assume that the fundamental control catalysing the transformation of blueschists into greenschists and the associated resetting of their isotopic systems was the selective infiltration of metamorphic fluid. A quartz–magnetite sample from a contact metamorphic skarn, taken near the Miocene monzogranite of Tinos, gave an oxygen isotope temperature of 555° C and calculated water composition of 9.1%. The value of δ18O obtained from this water is consistent with a primary magmatic fluid, but is lower than that of fluids associated with the greenschist overprint, which indicates that the latter event cannot be directly related to the monozogranite intrusion.  相似文献   
77.
This paper presents a numerical model for predicting the dynamic response of rock mass subjected to large‐scale underground explosion. The model is calibrated against data obtained from large‐scale field tests. The Hugoniot equation of state for rock mass is adopted to calculate the pressure as a function of mass density. A piecewise linear Drucker–Prager strength criterion including the strain rate effect is employed to model the rock mass behaviour subjected to blast loading. A double scalar damage model accounting for both the compression and tension damage is introduced to simulate the damage zone around the charge chamber caused by blast loading. The model is incorporated into Autodyn3D through its user subroutines. The numerical model is then used to predict the dynamic response of rock mass, in terms of the peak particle velocity (PPV) and peak particle acceleration (PPA) attenuation laws, the damage zone, the particle velocity time histories and their frequency contents for large‐scale underground explosion tests. The computed results are found in good agreement with the field measured data; hence, the proposed model is proven to be adequate for simulating the dynamic response of rock mass subjected to large‐scale underground explosion. Extended numerical analyses indicate that, apart from the charge loading density, the stress wave intensity is also affected, but to a lesser extent, by the charge weight and the charge chamber geometry for large‐scale underground explosions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
78.
The solar differential rotation: Present status of observations   总被引:1,自引:0,他引:1  
E. H. Schröter 《Solar physics》1985,100(1-2):141-169
The present status of observations regarding the solar differential rotation is reviewed from contributions published in the last two decades. The paper does not deal with the theory; it mentions theoretical aspects only where they are needed to guide and to understand observational efforts and results.Mitteilungen aus dem Kiepenheuer-Institut Nr. 250.  相似文献   
79.
80.
The reflectance coefficient of the regolith layer of celestial bodies has been studied in relation to the physical properties of regolith particles (size, refractive index, and packing density) on the basis of an accurate numerical radiative-transfer algorithm for a semi-infinite flat layer. Using the geometric-optics approximation, we have found that a shape mixture of randomly oriented spheroids can successfully model the single-scattering phase function of independent soil grains. In order to take into account the effect of packing density in a regolith layer, the concept of the so-called static structure factor was used. The main effect of increasing packing density is to suppress the forward-scattering peak of the phase function and to increase the albedo of the reflecting surface. We also investigated the influence of fine dust on the reflected light. An addition of small particles not only increases the surface albedo, but also changes the brightness profile and enhances the backscattering. Although the problem of unique solution, which is inherent in the retrieval of the properties of a medium from the measurements of the intensity of light scattered by this media, cannot be removed in the proposed model, the procedure used here, in contrast to widely used approximations, allows us to fit observational data with a set of real characteristics of the regolith. Semiempirical approaches are able to fit the measurements well with a small number of free parameters, but they do not explicitly contain crucial physical characteristics of the regolith such as grain sizes or the refractive index. We compared the numerical solution of the radiative-transfer equation with the Hapke approximation, which is most often used by investigators. The errors introduced by the Hapke model are small only for near-isotropic scattering by isolated particles. However, independent regolith grains are known to scatter light mainly in the forward direction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号