首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30726篇
  免费   573篇
  国内免费   381篇
测绘学   791篇
大气科学   2811篇
地球物理   6343篇
地质学   10753篇
海洋学   2377篇
天文学   6667篇
综合类   73篇
自然地理   1865篇
  2020年   180篇
  2019年   197篇
  2018年   491篇
  2017年   481篇
  2016年   711篇
  2015年   448篇
  2014年   675篇
  2013年   1405篇
  2012年   739篇
  2011年   1029篇
  2010年   873篇
  2009年   1240篇
  2008年   1059篇
  2007年   941篇
  2006年   1046篇
  2005年   874篇
  2004年   848篇
  2003年   869篇
  2002年   866篇
  2001年   744篇
  2000年   787篇
  1999年   662篇
  1998年   628篇
  1997年   667篇
  1996年   575篇
  1995年   540篇
  1994年   482篇
  1993年   426篇
  1992年   418篇
  1991年   416篇
  1990年   421篇
  1989年   399篇
  1988年   378篇
  1987年   464篇
  1986年   433篇
  1985年   464篇
  1984年   557篇
  1983年   560篇
  1982年   501篇
  1981年   490篇
  1980年   441篇
  1979年   417篇
  1978年   442篇
  1977年   381篇
  1976年   343篇
  1975年   344篇
  1974年   397篇
  1973年   388篇
  1972年   240篇
  1971年   220篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
132.
The evolution of the martian atmosphere with regard to its H2O inventory is influenced by thermal loss processes of H, H2, nonthermal atmospheric loss processes of H+, H2+, O, O+, CO2, and O2+ into space, as well as by chemical weathering of the surface soil. The evolution of thermal and nonthermal escape processes depend on the history of the intensity of the solar XUV radiation and the solar wind density. Thus, we use actual data from the observation of solar proxies with different ages from the Sun in Time program for reconstructing the Sun's radiation and particle environment from the present to 3.5 Gyr ago. The correlation between mass loss and X-ray surface flux of solar proxies follows a power law relationship, which indicates a solar wind density up to 1000 times higher at the beginning of the Sun's main sequence lifetime. For the study of various atmospheric escape processes we used a gas dynamic test particle model for the estimation of the pick up ion loss rates and considered pick up ion sputtering, as well as dissociative recombination. The loss of H2O from Mars over the last 3.5 Gyr was estimated to be equivalent to a global martian H2O ocean with a depth of about 12 m, which is smaller than the values reported by previous studies. If ion momentum transport, a process studied in detail by Mars Express is significant on Mars, the water loss may be enhanced by a factor of about 2. In our investigation we found that the sum of thermal and nonthermal atmospheric loss rates of H and all nonthermal escape processes of O to space are not compatible with a ratio of 2:1, and is currently close to about 20:1. Escape to space cannot therefore be the only sink for oxygen on Mars. Our results suggest that the missing oxygen (needed for the validation of the 2:1 ratio between H and O) can be explained by the incorporation into the martian surface by chemical weathering processes since the onset of intense oxidation about 2 Gyr ago. Based on the evolution of the atmosphere-surface-interaction on Mars, an overall global surface sink of about 2×1042 oxygen particles in the regolith can be expected. Because of the intense oxidation of inorganic matter, this process may have led to the formation of considerable amounts of sulfates and ferric oxides on Mars. To model this effect we consider several factors: (1) the amount of incorporated oxygen, (2) the inorganic composition of the martian soil and (3) meteoritic gardening. We show that the oxygen incorporation has also implications for the oxidant extinction depth, which is an important parameter to determine required sampling depths on Mars aimed at finding putative organic material. We found that the oxidant extinction depth is expected to lie in a range between 2 and 5 m for global mean values.  相似文献   
133.
134.
135.
In this paper we show that a change in the signs of some of the metric components of the solution of the field equations for the classical cosmic string results in a solution which we interpret as a time-dependent wall composed of tachyons. We show that the walls have the property of focusing the paths of particles which pass through them. As an illustration of this focusing, we demonstrate the results of a simple simulation of the interaction between one such tachyon wall and a rotating disk of point masses. This interaction leads to the temporary formation of spiral structures. These spiral structures exist for a time on the order of one galactic rotation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
136.
137.
The Cassini Visual and Infrared Mapping Spectrometer (VIMS) is an imaging spectrometer covering the wavelength range 0.3-5.2 μm in 352 spectral channels, with a nominal instantaneous field of view of 0.5 mrad. The Cassini flyby of Jupiter represented a unique opportunity to accomplish two important goals: scientific observations of the jovian system and functional tests of the VIMS instrument under conditions similar to those expected to obtain during Cassini's 4-year tour of the saturnian system. Results acquired over a complete range of visual to near-infrared wavelengths from 0.3 to 5.2 μm are presented. First detections include methane fluorescence on Jupiter, a surprisingly high opposition surge on Europa, the first visual-near-IR spectra of Himalia and Jupiter's optically-thin ring system, and the first near-infrared observations of the rings over an extensive range of phase angles (0-120°). Similarities in the center-to-limb profiles of H+3 and CH4 emissions indicate that the H+3 ionospheric density is solar-controlled outside of the auroral regions. The existence of jovian NH3 absorption at 0.93 μm is confirmed. Himalia has a slightly reddish spectrum, an apparent absorption near 3 μm, and a geometric albedo of 0.06±0.01 at 2.2 μm (assuming an 85-km radius). If the 3-μm feature in Himalia's spectrum is eventually confirmed, it would be suggestive of the presence of water in some form, either free, bound, or incorporated in layer-lattice silicates. Finally, a mean ring-particle radius of 10 μm is found to be consistent with Mie-scattering models fit to VIMS near-infrared observations acquired over 0-120° phase angle.  相似文献   
138.
Interplanetary field enhancements were first discovered in the vicinity of Venus. These events are characterised by an increase in the magnitude of the heliospheric magnetic field with a near-symmetrical, sometimes thorn-shaped profile, and last from minutes to hours. Surveys of the events near Venus and Earth indicated clustering of the events in inertial space, which suggested that their sources were Solar System objects other than the Sun. A survey is presented of strong events of this type detected by the Ulysses spacecraft from 1990 to late 2001. Most of the events are accompanied by a discontinuity in the field direction near the events' centres. Other discontinuities are often symmetrical about the enhancement. The majority of events last less than two hours. When examined as a whole, the events tend to be accompanied by subtle changes in some plasma parameters. The majority of the enhancements are accompanied by magnetic holes on their fringes. The enhancements' occurrence rate increases with decreasing heliocentric distance. Possible formation mechanisms are discussed. No link was found with solar, or solar wind sources. Several aspects of the survey results are consistent with an origin related to cometary dust trails. Possible processes associated with a dust-solar wind interaction are discussed.  相似文献   
139.
Mursula  K.  Zieger  B.  Vilppola  J.H. 《Solar physics》2003,212(1):201-207
Several recent studies have reported quasi-periodicities with a period between 1 and 2 years (to be called here `mid-term quasi-periodicities') in various heliospheric parameters, like solar wind speed, interplanetary magnetic field, cosmic rays, and geomagnetic activity. Here we study their long-term occurrence in geomagnetic activity using an extended aa index which covers the last 15 solar cycles. We confirm their intermittent occurrence and the alternation of their dominant period between a slightly shorter period of about 1.2–1.4 years and a slightly longer period of about 1.5–1.7 years. We find that the mid-term quasi-periodicities were strong during two intervals of high solar activity: in the mid-19th century and since 1930. Instead, contrary to earlier studies, we find that they were consistently weak during low solar activity from 1860s to 1920s. This implies a long-term connection between the amplitude of mid-term quasi-periodicities and the solar dynamo strength. Since the rotation speed at the bottom of the solar convection layer (tachocline) has recently been found to vary at a mid-term periodicity, this suggests that the stronger the solar dynamo is, the more variable the rotation rate of the tachocline is. We also note that the disappearance of mid-term periodicities may be used as a precursor for long intervals of very weak solar activity, like great minima.  相似文献   
140.
Abstract— We have studied the relationship between bulk chemical compositions and relative formation ages inferred from the initial 26Al/27Al ratios for sixteen ferromagnesian chondrules in least equilibrated ordinary chondrites, Semarkona (LL3.0) and Bishunpur (LL3.1). The initial 26Al/27Al ratios of these chondrules were obtained by Kita et al. (2000) and Mostefaoui et al. (2002), corresponding to relative ages from 0.7 ± 0.2 to 2.4 ?0.4/+0.7 Myr after calcium‐aluminum‐rich inclusions (CAIs), by assuming a homogeneous distribution of 26Al in the early solar system. The measured bulk compositions of the chondrules cover the compositional range of ferromagnesian chondrules reported in the literature and, thus, the chondrules in this study are regarded as representatives of ferromagnesian chondrules. The relative ages of the chondrules appear to correlate with bulk abundances of Si and the volatile elements (Na, K, Mn, and Cr), but there seems to exist no correlation of relative ages neither with Fe nor with refractory elements. Younger chondrules tend to be richer in Si and volatile elements. Our result supports the result of Mostefaoui et al. (2002) who suggested that pyroxene‐rich chondrules are younger than olivine‐rich ones. The correlation provides an important constraint on chondrule formation in the early solar system. It is explained by chondrule formation in an open system, where silicon and volatile elements evaporated from chondrule melts during chondrule formation and recondensed as chondrule precursors of the next generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号