首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24397篇
  免费   171篇
  国内免费   917篇
测绘学   1410篇
大气科学   1977篇
地球物理   4497篇
地质学   11588篇
海洋学   1002篇
天文学   1631篇
综合类   2161篇
自然地理   1219篇
  2020年   1篇
  2018年   4761篇
  2017年   4037篇
  2016年   2576篇
  2015年   233篇
  2014年   80篇
  2013年   24篇
  2012年   989篇
  2011年   2728篇
  2010年   2014篇
  2009年   2310篇
  2008年   1888篇
  2007年   2360篇
  2006年   52篇
  2005年   194篇
  2004年   402篇
  2003年   409篇
  2002年   249篇
  2001年   47篇
  2000年   51篇
  1999年   13篇
  1998年   21篇
  1981年   21篇
  1980年   19篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
191.
The main purpose of this paper is to describe ways to improve the microstructure of expansive soil by adding nanomaterials. Mechanical tests were done to explore the changes in shear strength and compression index of expansive soil that was modified by adding different amounts of two kinds of nanomaterials (nano-alumina and nano-silica). The test results show that adding 1.2% nano-alumina and about 2% nano-silica to expansive soil provides the optimal compression index. The test results show that adding 1.2% nano-alumina and about 1.5% nano-silica to expansive soil provides the optimal unconfined compression stress. Scanning electron microscopy of the microstructure of expansive soil modified by nanomaterials provided a deeper understanding of the effects of nanomaterials on improving expansive soil.  相似文献   
192.
Afyonkarahisar is a very important geothermal province of western Anatolia and has low and medium enthalpy geothermal areas. This study has been carried out for the preparation of distribution maps of soil gases (radon and carbon dioxide) and shallow soil temperature and the exploration of permeable tectonic regions associated with geothermal systems and reveal the origins of radon and carbon dioxide gases. The western district of the study area is characterized by the high radon concentration (168.30 kBq/m3), carbon dioxide ratio (0.30%), and soil temperature (21.0 °C) values. Fethibey and Demirçevre faults, which allow the circulation of geothermal fluids, have been detected in the distribution maps of radon, carbon dioxide, and shallow depth temperature and the directions of the curves in these maps correspond to the strikes of Demirçevre faults. The effect of the fault plays an important role in the change of carbon dioxide concentration along the W-E directional geological section prepared to determine the change of soil gas and shallow depth temperature values depending on lithological differences, fault existence, and geothermal reservoir depth. On the other hand, it was determined that Rn222 concentration and soil temperature changed as a function of geothermal reservoir depth or lithological difference. Tuffs in Köprülü volcano-sedimentary units are the main source of radon due to their higher uranium contents. Besides, the carbon dioxide in Ömer–Gecek soils has geothermal origin because of the highest carbon dioxide content (99.3%) in non-condense gas. The similarities in patterns of soil temperature, radon, and carbon dioxide indicate that the variation in soil temperatures is related to radon and carbon dioxide emissions. It is concluded that soil gas and temperature measurements can be used to determine the active faults in the initial stage of geothermal exploration successfully.  相似文献   
193.
Cracks appeared on the northern batter at Maddingley Brown Coal Open Pit Mine, Victoria, Australia, on 8 November 2013 and a 2-day rainfall event happened 5 days later. This study models the stability of the northern batter considering the effect of the rainfall event and an emergency buttress using finite element method (FEM) encoded in Plaxis 3D. It is found that the batter tended to lead to block sliding after overburden removal. The observed vertical crack would be a combined action of the overburden removal and groundwater flow. The simulated location of cracks agrees well with the actual location, and the simulated heave of the coal seam is in good agreement with the experience in Victoria brown coal open pit mining. The rainfall accelerated the development of the cracks. With the construction of the emergency buttress, the batter became stable that is in good agreement with the monitored data.  相似文献   
194.
In the paper, a novel inversion approach is used for the solution of the problem of factor analysis. The float-encoded genetic algorithm as a global optimization method is implemented to extract factor variables using open-hole logging data. The suggested statistical workflow is used to give a reliable estimate for not only the factors but also the related petrophysical properties in hydrocarbon formations. In the first step, the factor loadings and scores are estimated by Jöreskog’s fast approximate method, which are gradually improved by the genetic algorithm. The forward problem is solved to calculate wireline logs directly from the factor scores. In each generation, the observed and calculated well logs are compared to update the factor population. During the genetic algorithm run, the average fitness of factor populations is maximized to give the best fit between the observed and theoretical data. By using the empirical relation between the first factor and formation shaliness, the shale volume is estimated along the borehole. Permeability as a derived quantity also correlates with the first factor, which allows its determination from an independent source. The estimation results agree well with those of independent deterministic modeling and core measurements. Case studies from Hungary and the USA demonstrate the feasibility of the global optimization based factor analysis, which provides a useful tool for improved reservoir characterization.  相似文献   
195.
Continuous-in-scale multifractal cascades has long been an attractive choice for mathematically modeling turbulent and turbulent-like geophysical fields. These fields are usually anisotropic as they are subject to both stratification and rotation, thereby questioning the isotropy assumption often made to model them. The self-affine and generalized scale invariance approaches to scaling are used here to introduce anisotropy in such models. These anisotropic simulations have (1) unresolved large-scale features and (2) statistics that deviate from the desired power-law scaling mainly in the small scales. The former issue is solved via nesting, whereas the latter is attempted to be overcome using singularity correction methods. While earlier studies have proposed isotropic correction methods, here they have been generalized to correct anisotropic simulations. These singularity corrections seem to improve the small-scale statistical properties of mildly anisotropic simulations; nesting, on the other hand, appears to enhance statistics over almost all scales even for strongly anisotropic simulations. Both the correction and nesting techniques lead to a reduction in computational time and memory usage suggesting that nested singularity-corrected cascades offer a better framework for quantitatively modeling the atmosphere, ocean, solid earth, and associated fields.  相似文献   
196.
197.
The identified mollusks from the Burullus lagoon of Egypt (Eastern Mediterranean) are represented by four bivalve species and four gastropod species. Sources of heavy metals pollution in the Burullus lagoon include phosphate fertilizers, sewage and oil spills from fishing boats.The Cerastoderma glaucum species has a wide distribution in the central part of the studied area with satisfying criteria required for good bio-monitors of pollution. High concentrations of heavy metals are found in water, at the eastern side of the lagoon, while low concentrations were detected in the central and western sides of the lagoon. Pirenella conica constitutes the total gastropods assemblages, reflecting this species tolerance to the high concentration of heavy metals. Meanwhile, the total pelecypods in bottom lagoon sediments are completely absent in the eastern parts of the lagoon, which may be due to the sensitivity of pelecypods to the accumulation of heavy metals.  相似文献   
198.
199.
In the present investigation, an attempt has been made to explore the possibility of hydrocarbon prospects in the carbonaceous shale deposits of Spiti and Chikkim formations exposed in the Spiti valley of the Tethys Himalaya. Twenty samples, collected from successive levels of these litho-units, have been subjected to maceral analysis, Rock-Eval Pyrolysis and six samples to Fourier Transform Infra-red Spectroscopy (FTIR) and nuclear magnetic resonance (NMR) analyses. The study reveals the presence of mainly kerogen-III type of organic matter but some of the shale samples have shown a good amount of total organic carbon (TOC) to the tune of 3.19% which is sufficient to produce hydrocarbon. The results indicate the presence of methane occurring as free and fixed hydrocarbon in the shale samples. Few levels are especially rich in hydrocarbon. They have shown encouraging results with potential for generating liquid as well as lighter hydrocarbon. The data is also supported by the FTIR and NMR studies.  相似文献   
200.
Flood is among the deadliest disasters in India, and the frequency of floods and extreme precipitation events is projected to increase under the warming climate. The frequency of floods in India varies geographically as some regions are more prone to floods than the others. The Kerala flood of 2018 caused enormous economic damage, affected millions of people, and resulted in the death of more than 400 people. Here we provide a hydroclimatological perspective on the Kerala flood of 2018. Using the observations and model simulations from the Variable Infiltration Capacity (VIC) model, we show that the 2018 extreme precipitation and runoff conditions that caused flooding were unprecedented in the record of the past 66 years (1951–2017). Our results show that mean monsoon precipitation has significantly declined while air temperature has significantly increased during 1951–2017 in Kerala. The drying and warming trends during the monsoon season resulted in a declined total runoff in large part of the state in the last 66 years. Apart from the mean hydroclimatic conditions, extreme precipitation, and extreme total runoff have also declined from 1951 to 2017. However, 1 and 2-day extreme precipitation and extreme runoff conditions in August 2018 exceeded substantially from the long-term 95th percentiles recorded during 1951–2017. Since there is no increase in mean and extreme precipitation in Kerala over the last six decades, the extreme event during August 2018 is likely to be driven by anomalous atmospheric conditions due to climate variability rather anthropogenic climate warming. The severity of the Kerala flood of 2018 and the damage caused might be affected by several factors including land use/land cover change, antecedent hydrologic conditions, reservoir storage and operations, encroachment of flood plains, and other natural factors. The impacts of key drivers (anthropogenic and natural) on flood severity need to be established to improve our understanding of floods and associated damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号