首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   8篇
  国内免费   1篇
测绘学   2篇
大气科学   24篇
地球物理   42篇
地质学   50篇
海洋学   27篇
天文学   5篇
综合类   1篇
自然地理   9篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   9篇
  2015年   5篇
  2014年   11篇
  2013年   4篇
  2012年   8篇
  2011年   7篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   5篇
  2006年   6篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   5篇
  1979年   4篇
  1978年   5篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1965年   1篇
  1960年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
31.
32.
The authors examined the variability in wintertime cyclone activity and storm tracks and their relation to precipitation over China for the period 1951–2006 using the observational data.Two apparent modes of variability were assumed for the cyclone activity and storm tracks.The first mode describes the oscillation in the strength of the storm tracks in East Asia,which significantly increased since the mid-1980s,whereas the second mode describes a seesaw oscillation in the storm track strength between the Central-Southeast China and northern East Asia.The storm tracks over the Central-Southeast China have increased since the late 1960s.The possible causes for the variation of the cyclone activity and storm tracks are also explored.It is shown that wintertime precipitation,which has increased since the mid-1980s,concentrates in Central-Southeast China.The enhancement may be caused by the first mode of variability of storm tracks,whereas the interannual variability of precipitation may be linked to the second mode of the storm track variability.  相似文献   
33.
Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer‐lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater‐borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer‐lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater‐borne P loads vary from 0.74 to 2900 mg PO4‐P m?2 year?1; for N, these loads vary from 0.001 to 640 g m?2 year?1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
34.
35.
36.
37.
Summary The 1986 GPS survey of Iceland aimed to: (1) establish geodetic control in the South Iceland Seismic Zone (SISZ), to study destructive earthquakes there, (2) measure a country-wide network to form the basis of a new first order national network. 51 points were surveyed, with 20–30 km spacings within the SISZ and 100 km spacings elsewhere. The data were processed using the Bernese GPS software Version 3. Analysis was difficult due to poor satellite geometry and short-period ionospheric variations. However, an ambiguity-fixed, ionosphere-free solution gave accuracies of 1–2 cm in the horizontal and 2–3 cm in the vertical for the SISZ network and an ambiguity-free, ionosphere-free solution yielded accuracies of about 5 cm for the country-wide network. An ionosphere-free solution for the total survey with ambiguities fixed for the SISZ network only gave marginal additional improvements over the two separate solutions. GPS surveying has continued annually in Iceland with measurements in South Iceland in 1989 and 1992 (Hackman 1991; Sigmundsson 1992) and in North Iceland in 1987, 1990 and 1992 (Jahn et al. 1992; Foulger et al. 1992).  相似文献   
38.
39.
Physical models are a well‐established tool in education to strengthen hydrological understanding. They facilitate the straightforward visualization of hydrological processes and allow the communication of hydrological concepts, research and questions of general interest to the public. In order to visualize the water cycle in a landscape of postglacial sediments, in particular the subsurface part, a physical model was constructed. In two videos, (1) a detailed construction manual and (2) visualization examples of hydrological concepts and processes are presented. With our contribution, we like to encourage professionals in the field of hydrology to share methods and tools of knowledge transfer and communication of hydrological concepts. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
40.
We conducted an integrated groundwater–surface water monitoring programme in a 3.2‐km2 experimental catchment in the Scottish Highlands by sampling all springs, seepages, and wells in six, spatially extensive synoptic surveys over a 2‐year period. The catchment has been glaciated, with steep hillslopes and a flat valley bottom. There is around 70% glacial drift cover in lower areas. The solid geology, which outcrops at higher elevations, is granite and metamorphic schist. The springs and seepages generally occur at the contact between the solid geology and drift or at breaks of slopes in the valley bottom. Samples were analysed for stable isotopes, Gran alkalinity and electrical conductivity. Despite the surveys encompassing markedly different antecedent conditions, the isotopic composition of groundwater at each location exhibited limited temporal variability, resulting in a remarkable persistence of spatial patterns indicating well‐mixed shallow, groundwater stores. Moreover, line‐conditioned excess values derived from the isotope data indicated no evidence of fractionation affecting the groundwater, which suggests that most recharge occurs in winter. The alkalinity and electrical conductivity of groundwater reflected geological differences in the catchment, being highest where more weatherable calcareous rocks outcrop at higher altitudes in the catchment. Springs draining these areas also had the most variable isotope composition, which indicated that they have shorter residence times than the drift covered part of the catchment. The study showed that even in geologically heterogeneous upland catchments, groundwater can be characterized by a consistent isotopic composition, reflecting rapid mixing in the recharge zone. Our work, thus, emphasizes the critical role of groundwater in upland catchments and provides tracer data that can help constrain quantitative groundwater models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号