首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   13篇
  国内免费   5篇
测绘学   2篇
大气科学   14篇
地球物理   94篇
地质学   119篇
海洋学   7篇
天文学   42篇
自然地理   19篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   8篇
  2018年   14篇
  2017年   13篇
  2016年   15篇
  2015年   12篇
  2014年   6篇
  2013年   16篇
  2012年   9篇
  2011年   19篇
  2010年   24篇
  2009年   12篇
  2008年   15篇
  2007年   17篇
  2006年   9篇
  2005年   8篇
  2004年   13篇
  2003年   6篇
  2002年   10篇
  2001年   10篇
  2000年   3篇
  1999年   1篇
  1998年   5篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1940年   1篇
  1925年   1篇
排序方式: 共有297条查询结果,搜索用时 31 毫秒
81.
82.
83.
The Cayconi Formation of the Crucero Basin, Puno Department, southeastern Peru, has been described as a 800–1000 m sequence of Oligocene and Miocene fanglomerate and lacustrine sedimentary rocks, interlayered with mafic and silicic volcanic rocks, and unconformably overlying Paleozoic and Cretaceous successions. On the basis of new field and petrological investigations, key aspects of the stratigraphic relationships of the rocks comprising this formation, and hence the viability of this lithostratigraphic name, are questioned. Thus, several sedimentary units previously assigned to the Cayconi Formation are reinterpreted as Cretaceous or older. We further argue that the formational terminology fails to accomodate the great variety of volcanic rocks, which are, moreover, disposed in isolated eruptive fields. We therefore propose establishment of the Crucero Supergroup as a broad, yet flexible framework for lithostratigraphic subdivision of the Tertiary sequences of the Cordillera Oriental of southeastern Peru. This new nomenclature accomodates the voluminous two-mica ash flow tuffs (Macusani Volcanics) and associated rocks of the Quenamari Meseta, a succession excluded from the existing lithostratigraphic classification scheme. It also permits distinction between the petrogenetically-contrasted upper Oligocene — Lower Miocene and Middle Miocene — Upper Miocene volcanic suites, which dominate, respectively, the Picotani and Quenamari Groups comprising the proposed Crucero Supergroup. Finally, the economically important granitic/rhyolitic intrusive centers cogenetic with the volcanic rocks are readily assignable to intrusive lithodemes in each group.  相似文献   
84.
85.
86.
A recently proposed procedure for interrelating the steady-state and transient responses of multi-degree-of-freedom, classically damped linear systems is extended to non-classically damped systems. The extension is formulated for baseexcited systems, and it is illustrated by simple examples.  相似文献   
87.
Results for minor stratospheric constituents using a 2D model with self-consistent transport parameters are reported. The meridional circulation is obtained from the output of the MIT-GIT 3D stratospheric model (Cunnold et al., 1975). Consistent data from the same model are used to evaluate the diffusive tensors following the formalism of Holton (1981) and Tung (1982). Chemical damping is consequently taken into account, so that the entire model is built in a selfconsistent manner at the least with the 3D model and no ad hoc assumptions are made with respect of transport parameters. This version of the model represents a major improvement on previous work (Pitari and Visconti, 1984), which used to much too simple chemistry. Results are compared whenever possible with available experimental data, with particular emphasis on chemical reacting species. This comparison shows in general an agreement which is qualitatively similar to the one obtained from classical Eulerian models where transport parameters are often tuned to long-lived tracers without any sound physical basis.  相似文献   
88.
89.
The development of alternate bars in channelized rivers can be explained theoretically as an instability of the riverbed when the active channel width to depth ratio exceeds a threshold. However, the development of a vegetation cover on the alternate bars of some channelized rivers and its interactions with bar morphology have not been investigated in detail. Our study focused on the co‐evolution of alternate bars and vegetation along a 33 km reach of the Isère River, France. We analysed historical information to investigate the development of alternate bars and their colonization by vegetation within a straightened, embanked river subject to flow regulation, sediment mining, and vegetation management. Over an 80 year period, bar density decreased, bar length increased, and bar mobility slowed. Vegetation encroachment across bar surfaces accompanied these temporal changes and, once established, vegetation cover persisted, shifting the overall system from an unvegetated to a vegetated dynamic equilibrium state. The unvegetated morphodynamics of the impressively regular sequence of alternate bars that developed in the Isère following channelization is consistent with previous theoretical morphodynamic work. However, the apparent triggering dynamics of vegetation colonization needs to be investigated, based on complex biophysical instability processes. If instability related to vegetation colonization is confirmed, further work needs to focus on the relevance of initial conditions for this instability, and on related feedback effects such as how the morphodynamics of bare‐sediment alternate bars may have affected vegetation development and, in turn, how vegetation has created a new dynamic equilibrium state. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
90.
The overpresence of fine sediment and fine sediment infiltration (FSI) in the aquatic environment of rivers are of increasing importance due to their limiting effects on habitat quality and use. The habitats of both macroinvertebrates and fish, especially spawning sites, can be negatively affected. More recently, hydropeaking has been mentioned as a driving factor in fine sediment dynamics and FSI in gravel-bed rivers. The primary aim of the present study was to quantify FSI in the vertical stratigraphy of alpine rivers with hydropeaking flow regimes in order to identify possible differences in FSI between the permanently wetted area (during base and peak flows) and the so-called dewatering areas, which are only inundated during peak flows. Moreover, we assessed whether the discharge ratio between base and peak flow is able to explain the magnitude of FSI. To address these aims, freeze-core samples were taken in eight different alpine river catchments. The results showed significant differences in the vertical stratification of FSI between the permanently wetted area during base flow and the dewatering sites. Surface clogging occurred only in the dewatering areas, with decreasing percentages of fine sediments associated with increasing core depths. In contrast, permanently wetted areas contained little or no fine sediment concentrations on the surface of the river bed. Furthermore, no statistical relationship was observed between the magnitude of hydropeaking and the sampled FSI rate. A repeated survey of FSI in the gravel matrix revealed the importance of de-clogging caused by flooding and the importance of FSI in the aquatic environment, especially in the initial stages of riparian vegetation establishment. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号