首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   13篇
  国内免费   5篇
测绘学   8篇
大气科学   17篇
地球物理   93篇
地质学   120篇
海洋学   12篇
天文学   48篇
自然地理   22篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   7篇
  2019年   7篇
  2018年   18篇
  2017年   13篇
  2016年   13篇
  2015年   12篇
  2014年   9篇
  2013年   18篇
  2012年   13篇
  2011年   26篇
  2010年   19篇
  2009年   18篇
  2008年   20篇
  2007年   15篇
  2006年   9篇
  2005年   4篇
  2004年   11篇
  2003年   8篇
  2002年   10篇
  2001年   11篇
  2000年   5篇
  1999年   3篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1993年   2篇
  1990年   1篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1962年   1篇
  1940年   1篇
  1925年   1篇
排序方式: 共有320条查询结果,搜索用时 31 毫秒
21.
We investigated the partitioning of trace substances during the phase transition from supercooled to mixed-phase cloud induced by artificial seeding. Simultaneous determination of the concentrations of H2O2, NH3 and black carbon (BC) in both condensed and interstitial phases with high time resolution showed that the three species undergo different behaviour in the presence of a mixture of ice crystals and supercooled droplets. Both H2O2 and NH3 are efficiently scavenged by growing ice crystals, whereas BC stayed predominantly in the interstitial phase. In addition, the scavenging of H2O2 is driven by co-condensation with water vapour onto ice crystals while NH3 uptake into the ice phase is more efficient than co-condensation alone. The high solubility of NH4+ in the ice could explain this result. Finally, it appears that the H2O2–SO2 reaction is very slow in the ice phase with respect to the liquid phase. Our results are directly applicable for clouds undergoing limited riming.  相似文献   
22.
Volcán Huaynaputina is a group of four vents located at 16°36'S, 70°51'W in southern Peru that produced one of the largest eruptions of historical times when ~11 km3 of magma was erupted during the period 19 February to 6 March 1600. The main eruptive vents are located at 4200 m within an erosion-modified amphitheater of a significantly older stratovolcano. The eruption proceeded in three stages. Stage I was an ~20-h sustained plinian eruption on 19-20 February that produced an extensive dacite pumice fall deposit (magma volume ~2.6 km3). Throughout medial-distal and distal parts of the dispersal area, a fine-grained plinian ashfall unit overlies the pumice fall deposit. This very widespread ash (magma volume ~6.2 km3) has been recognized in Antarctic ice cores. A short period of quiescence allowed local erosion of the uppermost stage-I deposits and was followed by renewed but intermittent explosive activity between 22 and 26 February (stage II). This activity resulted in intercalated pyroclastic flow and pumice fall deposits (~1 km3). The flow deposits are valley confined, whereas associated co-ignimbrite ash fall is found overlying the plinian ash deposit. Following another period of quiescence, vulcanian-type explosions of stage III commenced on 28 February and produced crudely bedded ash, lapilli, and bombs of dense dacite (~1 km3). Activity ceased on 6 March. Compositions erupted are predominantly high-K dacites with a phenocryst assemblage of plagioclase>hornblende>biotite>Fe-Ti oxides-apatite. Major elements are broadly similar in all three stages, but there are a few important differences. Stage-I pumice has less evolved glass compositions (~73% SiO2), lower crystal contents (17-20%), lower density (1.0-1.3 g/cm3), and phase equilibria suggest higher temperature and volatile contents. Stage-II and stage-III juvenile clasts have more evolved glass (~76% SiO2) compositions, higher crystal contents (25-35%), higher densities (up to 2.2 g/cm3), and lower temperature and volatile contents. All juvenile clasts show mineralogical evidence for thermal disequilibrium. Inflections on a plot of log thickness vs area1/2 for the fall deposits suggest that the pumice fall and the plinian ash fall were dispersed under different conditions and may have been derived from different parts of the eruption column system. The ash appears to have been dispersed mainly from the uppermost parts of the umbrella cloud by upper-level winds, whereas the pumice fall may have been derived from the lower parts of the umbrella cloud and vertical part of the eruption column and transported by a lower-altitude wind field. Thickness half distances and clast half distances for the pumice fall deposit suggests a column neutral buoyancy height of 24-32 km and a total column height of 34-46 km. The estimated mass discharge rate for the ~20-h-long stage-I eruption is 2.4᎒8 kg/s and the volumetric discharge rate is ~3.6᎒5 m3/s. The pumice fall deposit has a dispersal index (Hildreth and Drake 1992) of 4.4, and its index of fragmentation is at least 89%, reflecting the dominant volume of fines produced. Of the 11 km3 total volume of dacite magma erupted in 1600, approximately 85% was evacuated during stage 1. The three main vents range in size from ~70 to ~400 m. Alignment of these vents and a late-stage dyke parallel to the NNW-SSE trend defined by older volcanics suggest that the eruption initiated along a fissure that developed along pre-existing weaknesses. During stage I this fissure evolved into a large flared vent, vent 2, with a diameter of approximately 400 m. This vent was active throughout stage II, at the end of which a dome was emplaced within it. During stage III this dome was eviscerated forming the youngest vent in the group, vent 3. A minor extra-amphitheater vent was produced during the final event of the eruptive sequence. Recharge may have induced magma to rise away from a deep zone of magma generation and storage. Subsequently, vesiculation in the rising magma batch, possibly enhanced by interaction with an ancient hydrothermal system, triggered and fueled the sustained Plinian eruption of stage I. A lower volatile content in the stage-II and stage-III magma led to transitional column behavior and pyroclastic flow generation in stage II. Continued magma uprise led to emplacement of a dome which was subsequently destroyed during stage III. No caldera collapse occurred because no shallow magma chamber developed beneath this volcano.  相似文献   
23.
Our analysis of the continuous outgoing long wave earth radiation (OLR) indicates anomalous variations prior to a number of medium to large earthquakes. The most recent analysis of OLR is from the M9.0 Sumatra Andaman Islands mega trust event. We compared the reference fields for December 2001 to 2004 and found OLR anomalous values, > 80 W/m2, (2σ) within the epicentral area on Dec 21, 2004, 5 days before the event. We used the NOAA/IR daily (one degree) and monthly (two and half degree) gridded data to differentiate between the global and seasonal variability and the transient local anomalies. The cause of such anomalies is not fully understood; one possible explanation is the existence of thermal outgoing radiation as a result of near ground air ionization and latent heat change due to change of air humidity and temperature. This phenomenon is hypothesized to be part of a relationship between tectonic stresses, electrochemical and thermodynamic processes in the atmosphere and increasing mid IR flux, all part of a family of electromagnetic (EM) phenomena related to earthquake activity. The time scale of the observed variations is a few weeks before the onset of the seismic event. In comparison with several years of data, the observed time-series preceding the earthquake had unusually high OLR. The OLR anomaly corresponds to a large area of ground coverage and coincides with the main epicentral zone. The significance of these observations is explored using data from most recent East Asian earthquake swarm of December 2004 and three other earthquakes.  相似文献   
24.
A continuous-coring borehole recently drilled at Camaldoli dellaTorre on the southern slopes of Somma–Vesuvius providesconstraints on the volcanic and magmatic history of the Vesuvianvolcanic area since c. 126 ka BP. The cored sequence includesvolcanic units, defined on stratigraphical, sedimentological,petrological and geochemical grounds, emitted from both localand distal vents. Some of these units are of known age, suchas one Phlegraean pre-Campanian Ignimbrite, Campanian Ignimbrite(39 ka), Neapolitan Yellow Tuff (14· 9 ka) and VesuvianPlinian deposits, which helps to constrain the relative ageof the other units. The main rock types encountered are shoshonite,phonotephrite, latite, trachyte and phonolite. The sequenceincludes, from the base upwards: a thick succession of pyroclasticunits emplaced between 126 and 39 ka, most of them attributedto eruptions that occurred in the Phlegraean area; the CampanianIgnimbrite; the products of a local tuff cone formed between39 ka and the deposition of the products of the earliest activityof the Mt. Somma volcano; the products of the Somma–Vesuviusvolcano, which include from the base upwards a thick sequenceof lavas, pyroclastic rocks and the products of a local spattercone dated between 3· 7 ka and AD 79. The data obtainedfrom the study of the borehole show that, before the CampanianIgnimbrite eruption, low-energy explosive volcanism took placein the Vesuvian area, whereas mostly high-energy explosive eruptionscharacterized the Campi Flegrei activity. In the Vesuvian area,Campanian Ignimbrite deposition was followed by the eruptionof a local tuff cone and a long repose time, which predatedthe formation of the Mt. Somma edifice. Since 18· 3 ka(Pomici di Base eruption) the activity of Somma–Vesuviusbecame mostly explosive with rare lava effusions. The shallowestcored deposits belong to the Camaldoli della Torre cone, formedbetween the Pomici di Avellino and Pomici di Pompei eruptions(3· 7 ka–AD 79). New geochemical and Sr–Nd–Pb–B-isotopicdata on samples from the drilled core, together with those availablefrom the literature, allow us to further distinguish the volcanicrocks as a function of both their provenance (i.e. Phlegraeanor Vesuvian areas) and age, and to identify different magmaticprocesses acting through time in the Vesuvian mantle source(s)and during magma ascent towards the surface. Isotopically distinctmagmas, rising from a mantle source variably contaminated byslab-derived components, stagnated at mid-crustal depths (8–10km below sea level) where magmas differentiated and were probablycontaminated. Contamination occurred either with Hercynian continentalcrust, mostly during the oldest stages of Vesuvian activity(from 39 to 16 ka), or with Mesozoic limestone, mostly duringrecent Vesuvian activity. Energy constrained assimilation andfractional crystallization (EC-AFC) modelling results show thatcontamination with Hercynian crust probably occurred duringdifferentiation from shoshonite to latite. Contamination withlimestone, which is not well constrained with the availabledata, might have occurred only during the transition from shoshoniteto tephrite. From the ‘deep’ reservoir, magmas rosetowards a series of shallow reservoirs, in which they differentiatedfurther, mixed, and fed volcanic activity. KEY WORDS: Somma–Vesuvius; crustal contamination; source heterogeneity; radiogenic and stable isotopes; magmatic system  相似文献   
25.
26.
Guido G Weigend 《Geoforum》1975,6(2):151-161
The Danube River, Europe's longest west of the Soviet Union, connects central and southeastern Europe. It flows through areas of great diversity of climates and land forms. Navigation has, in fact, been hindered by fluctuating water levels, ice, and defiles. Primarily for political reasons the river, prior to the middle of the 20th century, had never been a viable link of transportation and communication. Since the second world war, however, effective internationalization of the river, extensive navigation improvement projects, construction of dams and hydroelectric power plants, and greatly accelerated economic development in the Danube River basin in general, all point toward the river becoming one of Europe's principal axes and regional bonds.  相似文献   
27.
Computations of concentrations of minor stratospheric gases using a two-dimensional model of the stratosphere are reported. The model includes Rayleigh scattering. This results in an increase in the photodissociation rate computation time by a factor of 1.5. The effect of ground albedo is assessed by comparing our results with a calculation of photolysis rates for a constant albedo with latitude. Comparison of results with a reference model including only molecular absorption are also made. The largest differences (50%) occur in NO and OH. An approximate expression for including the effects of Rayleigh scattering and surface reflectance in multi-dimensional models is suggested.  相似文献   
28.
New optimal, contractivity-preserving (CP), explicit, d-derivative, k-step Hermite–Obrechkoff series methods of order p up to \(p=20\), denoted by CP HO(dkp), with nonnegative coefficients are constructed. These methods are used to solve nonstiff first-order initial value problems \(y'=f(t,y)\), \(y(t_0)=y_0\). The upper bound \(p_u\) of order p of HO(dkp) can reach, approximately, as high as 2.4 times the number of derivatives d. The stability regions of HO(dkp) have generally a good shape and grow with decreasing \(p-d\). We, first, note that three selected CP HO methods: 4-derivative 7-step HO of order 13, denoted by HO(4, 7, 13), 5-derivative 6-step HO of order 13, denoted by HO(5, 6, 13), and 9-derivative 2-step HO of order 13, denoted by CMDAHO(13) compare favorably with Adams–Cowell of order 13, denoted by AC(13), in solving standard N-body problems over an interval of 1000 periods on the basis of the relative error of energy as a function of the CPU time. Next, the three HO methods compare positively with AC(13) in solving standard N-body problems on the basis of the growth of relative positional error and relative energy error over 10, 000 periods of integration. Finally, these three methods compare also well with P-stable methods of Cash and Franco et al. on some quasi periodic, second-order linear and nonlinear problems. The coefficients of selected HO methods are listed in the appendix.  相似文献   
29.
Abstract– The Omeonga ring structure (D.R. Congo) shows a remarkable drainage pattern encircling an area up to 45 km wide and encompassing a central smoothed relief 20 km wide. This inner circular ridge is elevated about 70 m above the ring depression corresponding to the bed of the Unia River, which flows between the inner ridge and an outer irregular ridge. Landsat 7 ETM and ASTER DEM show that the structural characteristics resemble those of several wide impact structures known on Earth. Other geological modes of origin that could produce ring structures, such as magmatic activity, salt diapirism, and karst dissolution have been considered. However, after evaluating the regional stratigraphy, the distribution of volcanism, and morphometry, these processes seem to be rather unlikely. If of impact origin, the age of the Omeonga structure can be constrained to the Late Cretaceous‐Cenozoic according to the youngest units in which the ring structure was formed.  相似文献   
30.
Studies of operational pollution carried out by European commission - Joint Research Centre in the Mediterranean Sea for the years 1999-2004 are briefly introduced. The specific analysis of the Adriatic Sea for the same period demonstrates that this area has been characterized by a relevant number of illegal discharges from ships. After setting the historical background of the project AESOP (aerial and satellite surveillance of operational pollution in the Adriatic Sea), the content, partners and aim of the project are presented. Finally, the results of the first phase of the AESOP project are presented. The results seem very encouraging. For the first time in the Adriatic, real time detection of oil spills in satellite images and an immediate verification by the Coast Guard has been undertaken. An exploratory activity has also been carried out in collaboration with the University of Ljubljana to use automatic information system (AIS) to identify the ships detected in the satellite images.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号