首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30247篇
  免费   1310篇
  国内免费   2383篇
测绘学   1793篇
大气科学   3308篇
地球物理   5932篇
地质学   14465篇
海洋学   1791篇
天文学   1966篇
综合类   2737篇
自然地理   1948篇
  2024年   33篇
  2023年   139篇
  2022年   310篇
  2021年   352篇
  2020年   277篇
  2019年   279篇
  2018年   5031篇
  2017年   4276篇
  2016年   2872篇
  2015年   542篇
  2014年   462篇
  2013年   387篇
  2012年   1313篇
  2011年   3029篇
  2010年   2334篇
  2009年   2620篇
  2008年   2178篇
  2007年   2619篇
  2006年   269篇
  2005年   359篇
  2004年   562篇
  2003年   546篇
  2002年   410篇
  2001年   207篇
  2000年   211篇
  1999年   288篇
  1998年   309篇
  1997年   256篇
  1996年   259篇
  1995年   196篇
  1994年   179篇
  1993年   137篇
  1992年   114篇
  1991年   95篇
  1990年   96篇
  1989年   74篇
  1988年   58篇
  1987年   56篇
  1986年   43篇
  1985年   27篇
  1984年   19篇
  1983年   10篇
  1982年   15篇
  1981年   34篇
  1980年   31篇
  1979年   6篇
  1977年   2篇
  1976年   10篇
  1938年   2篇
  1936年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
A small target detection approach based on independent component analysis for hyperspectral data is put forward. In this algorithm, firstly the fast independent component analysis(FICA) is used to collect target information hided in high-dimensional data and projects them into low-dimensional space. Secondly, the feature images are selected with kurtosis. At last, small targets are extracted with histogram image segmentation which has been labeled by skewness.  相似文献   
122.
本文介绍了传统海域动态监视监测存在的问题,分析了无人机遥感系统在海域动态监视监测中的应用优势,提出将我省海域无人机在海域和海岛监视监测中应用解决方案,同时对该系统在海洋其他领域中的应用前景进行了展望.  相似文献   
123.
This paper endeavours to put the discussion on errors and uncertainties in geographical information systems (GISs) in a more systematic way by examining the strength and weakness of discrete objects and continous fields, the two distinct schools of spatial data modelling. In doing so, it argues that neither discrete objects nor continous fields alone provide objective and complete representations of highly complex geographical phenomena, though there are good reasons for asserting that continuous fields are better suited to modelling spatial dependence, heterogeneity and fuzzines significant in geographical reality than discrete objects. Thus, there seems to be merit in adopting an integrated model incorporating analytical capabilities of fields and generalization functions of objects, for which extended TIN (triangulated irregular network) models along with their duals (Voronoi diagrams) provide a pragmatical solution.  相似文献   
124.
Interferometric Synthetic Aperture Radar (InSAR), nowadays, is a precise technique for monitoring and detecting ground deformation at a millimetric level over large areas using multi-temporal SAR images. Persistent Scatterer Interferometric SAR (PSInSAR), an advanced version of InSAR, is an effective tool for measuring ground deformation using temporally stable reference points or persistent scatterers. We have applied both PSInSAR and Small Baseline Subset (SBAS) methods, based on the spatial correlation of interferometric phase, to estimate the ground deformation and time-series analysis. In this study, we select Las Vegas, Nevada, USA as our test area to detect the ground deformation along satellite line-of-sight (LOS) during November 1992–September 2000 using 44 C-band SAR images of the European Remote Sensing (ERS-1 and ERS-2) satellites. We observe the ground displacement rate of Las Vegas is in the range of ?19 to 8 mm/year in the same period. We also cross-compare PSInSAR and SBAS using mean LOS velocity and time-series. The comparison shows a correlation coefficient of 0.9467 in the case of mean LOS velocity. Along this study, we validate the ground deformation results from the satellite with the ground water depth of Las Vegas using time-series analysis, and the InSAR measurements show similar patterns with ground water data.  相似文献   
125.
The importance of mass wasting in glacier environments and its impacts on glacier dynamics is not fully understood. This is the first occurrence of a debris avalanche event onto a Himalayan glacier through satellite data analysis. The analysis of various factors indicates the slide was a climate-driven hill-slope event activated in 2009 masking the Miyar glacier surface up to ~1.5% including its both lateral moraines and medial moraines. Due to this addition the glacier had neither advance nor retreat from 2009 to 2014. Eventually the debris will contribute to the supraglacial and englacial debris of the glacier. This showcases the way of mass wasting an important contribution to the debris budget of the Himalayan glaciers.  相似文献   
126.
This paper has established a high-precision hierarchical estimated pose parameters of image. Firstly, we select corresponding three image points of 3D points which constitute the largest area in image as a base, in order to estimate the depth and translate information; then based on the above method, we obtain the scale parameter of camera exterior information. And finally, the topic is transformed to a problem of estimating rotation relationship by vector, using Procrustes theory to obtain the best estimate of the angle elements of exterior parameters. The method can effectively solve problems which depth and coupling pose parameters cannot deal with. Experimental results show that this method of determining position and orientation parameter estimation model is of briefness, easy convergence and it can also achieve higher parameter estimation accuracy than the direct projection matrix factorization.  相似文献   
127.

Background

Accurate estimation of aboveground forest biomass (AGB) and its dynamics is of paramount importance in understanding the role of forest in the carbon cycle and the effective implementation of climate change mitigation policies. LiDAR is currently the most accurate technology for AGB estimation. LiDAR metrics can be derived from the 3D point cloud (echo-based) or from the canopy height model (CHM). Different sensors and survey configurations can affect the metrics derived from the LiDAR data. We evaluate the ability of the metrics derived from the echo-based and CHM data models to estimate AGB in three different biomes, as well as the impact of point density on the metrics derived from them.

Results

Our results show that differences among metrics derived at different point densities were significantly different from zero, with a larger impact on CHM-based than echo-based metrics, particularly when the point density was reduced to 1 point m?2. Both data models-echo-based and CHM-performed similarly well in estimating AGB at the three study sites. For the temperate forest in the Sierra Nevada Mountains, California, USA, R2 ranged from 0.79 to 0.8 and RMSE (relRMSE) from 69.69 (35.59%) to 70.71 (36.12%) Mg ha?1 for the echo-based model and from 0.76 to 0.78 and 73.84 (37.72%) to 128.20 (65.49%) Mg ha?1 for the CHM-based model. For the moist tropical forest on Barro Colorado Island, Panama, the models gave R2 ranging between 0.70 and 0.71 and RMSE between 30.08 (12.36%) and 30.32 (12.46) Mg ha?1 [between 0.69–0.70 and 30.42 (12.50%) and 61.30 (25.19%) Mg ha?1] for the echo-based [CHM-based] models. Finally, for the Atlantic forest in the Sierra do Mar, Brazil, R2 was between 0.58–0.69 and RMSE between 37.73 (8.67%) and 39.77 (9.14%) Mg ha?1 for the echo-based model, whereas for the CHM R2 was between 0.37–0.45 and RMSE between 45.43 (10.44%) and 67.23 (15.45%) Mg ha?1.

Conclusions

Metrics derived from the CHM show a higher dependence on point density than metrics derived from the echo-based data model. Despite the median of the differences between metrics derived at different point densities differing significantly from zero, the mean change was close to zero and smaller than the standard deviation except for very low point densities (1 point m?2). The application of calibrated models to estimate AGB on metrics derived from thinned datasets resulted in less than 5% error when metrics were derived from the echo-based model. For CHM-based metrics, the same level of error was obtained for point densities higher than 5 points m?2. The fact that reducing point density does not introduce significant errors in AGB estimates is important for biomass monitoring and for an effective implementation of climate change mitigation policies such as REDD + due to its implications for the costs of data acquisition. Both data models showed similar capability to estimate AGB when point density was greater than or equal to 5 point m?2.
  相似文献   
128.
Single-frequency precise point positioning (SF-PPP) is a potential precise positioning technique due to the advantages of the high accuracy in positioning after convergence and the low cost in operation. However, there are still challenges limiting its applications at present, such as the long convergence time, the low reliability, and the poor satellite availability and continuity in kinematic applications. In recent years, the achievements in the dual-frequency PPP have confirmed that its performance can be significantly enhanced by employing the slant ionospheric delay and receiver differential code bias (DCB) constraint model, and the multi-constellation Global Navigation Satellite Systems (GNSS) data. Accordingly, we introduce the slant ionospheric delay and receiver DCB constraint model, and the multi-GNSS data in SF-PPP modular together. In order to further overcome the drawbacks of SF-PPP in terms of reliability, continuity, and accuracy in the signal easily blocking environments, the inertial measurements are also adopted in this paper. Finally, we form a new approach to tightly integrate the multi-GNSS single-frequency observations and inertial measurements together to ameliorate the performance of the ionospheric delay and receiver DCB-constrained SF-PPP. In such model, the inter-system bias between each two GNSS systems, the inter-frequency bias between each two GLONASS frequencies, the hardware errors of the inertial sensors, the slant ionospheric delays of each user-satellite pair, and the receiver DCB are estimated together with other parameters in a unique Kalman filter. To demonstrate its performance, the multi-GNSS and low-cost inertial data from a land-borne experiment are analyzed. The results indicate that visible positioning improvements in terms of accuracy, continuity, and reliability can be achieved in both open-sky and complex conditions while using the proposed model in this study compared to the conventional GPS SF-PPP.  相似文献   
129.
This work is an investigation of three methods for regional geoid computation: Stokes’s formula, least-squares collocation (LSC), and spherical radial base functions (RBFs) using the spline kernel (SK). It is a first attempt to compare the three methods theoretically and numerically in a unified framework. While Stokes integration and LSC may be regarded as classic methods for regional geoid computation, RBFs may still be regarded as a modern approach. All methods are theoretically equal when applied globally, and we therefore expect them to give comparable results in regional applications. However, it has been shown by de Min (Bull Géod 69:223–232, 1995. doi: 10.1007/BF00806734) that the equivalence of Stokes’s formula and LSC does not hold in regional applications without modifying the cross-covariance function. In order to make all methods comparable in regional applications, the corresponding modification has been introduced also in the SK. Ultimately, we present numerical examples comparing Stokes’s formula, LSC, and SKs in a closed-loop environment using synthetic noise-free data, to verify their equivalence. All agree on the millimeter level.  相似文献   
130.
The Global Navigation Satellite System presents a plausible and cost-effective way of computing the total electron content (TEC). But TEC estimated value could be seriously affected by the differential code biases (DCB) of frequency-dependent satellites and receivers. Unlike GPS and other satellite systems, GLONASS adopts a frequency-division multiplexing access mode to distinguish different satellites. This strategy leads to different wavelengths and inter-frequency biases (IFBs) for both pseudo-range and carrier phase observations, whose impacts are rarely considered in ionospheric modeling. We obtained observations from four groups of co-stations to analyze the characteristics of the GLONASS receiver P1P2 pseudo-range IFB with a double-difference method. The results showed that the GLONASS P1P2 pseudo-range IFB remained stable for a period of time and could catch up to several meters, which cannot be absorbed by the receiver DCB during ionospheric modeling. Given the characteristics of the GLONASS P1P2 pseudo-range IFB, we proposed a two-step ionosphere modeling method with the priori IFB information. The experimental analysis showed that the new algorithm can effectively eliminate the adverse effects on ionospheric model and hardware delay parameters estimation in different space environments. During high solar activity period, compared to the traditional GPS + GLONASS modeling algorithm, the absolute average deviation of TEC decreased from 2.17 to 2.07 TECu (TEC unit); simultaneously, the average RMS of GPS satellite DCB decreased from 0.225 to 0.219 ns, and the average deviation of GLONASS satellite DCB decreased from 0.253 to 0.113 ns with a great improvement in over 55%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号