首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   11篇
测绘学   6篇
大气科学   17篇
地球物理   37篇
地质学   60篇
海洋学   17篇
天文学   25篇
自然地理   10篇
  2024年   4篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   8篇
  2019年   5篇
  2018年   8篇
  2017年   6篇
  2016年   12篇
  2015年   7篇
  2014年   9篇
  2013年   17篇
  2012年   6篇
  2011年   11篇
  2010年   11篇
  2009年   8篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1980年   1篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1964年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
41.
The Southern Hemisphere westerly winds are an important component of the climate system at hemispheric and global scales. Variations in their intensity and latitudinal position through an ice-age cycle have been proposed as important drivers of global climate change due to their influence on deep-ocean circulation and changes in atmospheric CO2. The position, intensity, and associated climatology of the southern westerlies during the last glacial maximum (LGM), however, is still poorly understood from empirical and modelling standpoints. Here we analyse the behaviour of the southern westerlies during the LGM using four coupled ocean-atmosphere simulations carried out by the Palaeoclimate Modelling Intercomparison Project Phase 2 (PMIP2). We analysed the atmospheric circulation by direct inspection of the winds and by using a cyclone tracking software to indicate storm tracks. The models suggest that changes were most significant during winter and over the Pacific ocean. For this season and region, three out four models indicate decreased wind intensities at the near surface as well as in the upper troposphere. Although the LGM atmosphere is colder and the equator to pole surface temperature gradient generally increases, the tropospheric temperature gradients actually decrease, explaining the weaker circulation. We evaluated the atmospheric influence on the Southern Ocean by examining the effect of wind stress on the Ekman pumping. Again, three of the models indicate decreased upwelling in a latitudinal band over the Southern Ocean. All models indicate a drier LGM than at present with a clear decrease in precipitation south of 40°S over the oceans. We identify important differences in precipitation anomalies over the land masses at regional scale, including a drier climate over New Zealand and wetter over NW Patagonia.  相似文献   
42.
The Oligocene depositional history of the Thrace Basin documents a unique paleogeographic position at a junction between the Western Tethys and the Eastern Paratethys. As part of the Tethys, shallow marine carbonate platforms prevailed during the Eocene. Subsequently, a three-staged process of isolation started with the Oligocene. During the Early Rupelian, the Thrace Basin was still part of the Western Tethys, indicated by typical Western Tethyan marine assemblages. The isolation from the Tethys during the Early Oligocene is reflected by oolite formation and endemic Eastern Paratethyan faunas of the Solenovian stage. The third phase reflects an increasing continentalisation of the Thrace Basin with widespread coastal swamps during the Late Solenovian. The mollusc assemblages are predominated by mangrove dwelling taxa and the mangrove plant Avicennia is recorded in the pollen spectra. The final continentalisation is indicated by the replacement of the coastal swamps by pure freshwater swamps and fluvial plains during the Late Oligocene (mammal zone MP 26). This paleogeographic affiliation of the Thrace Basin with the Eastern Paratethys after ~32 Ma contrasts all currently used reconstructions which treat the basin as embayment of the Eastern Mediterranean basin.  相似文献   
43.
Nine models from the Coupled Model Intercomparison Project version 3 dataset are employed to examine projected changes in the South American Monsoon System annual cycle by comparing the 20th Century and SRES A2 scenarios. The following hypotheses are examined: (1) the warm season climate responses in the Southeast, Continental South Atlantic Convergence Zone (CSACZ) and Monsoon regions are related by regional circulation and moisture transport changes which, in turn, must be consistent with robust large-scale changes in the climate system, and (2) an increased threshold for convection in a warmer world may affect the timing of warm season rains. The present analysis reaffirms that the Southeast region is likely to experience increased precipitation through the warm season. Additional results exhibit more uncertainty due to large inter-model variance and disagreement in the A2 scenarios. Nevertheless several statistically significant results are found. In the Monsoon and to a lesser extent in the CSACZ region, the multi-model median suggests reduced precipitation during spring (Sep–Nov). These continental precipitation changes are accompanied by a southward shift of the maximum precipitation in the South Atlantic Convergence Zone. Changes in circulation include a poleward displaced South Atlantic Anticyclone (SAAC) and enhanced moisture transport associated with a strengthened northerly low level flow east of the Andes during spring. Moisture transport divergence calculations indicate unchanged divergence in the Monsoon region during spring and increased convergence in the Southeast throughout the warm season. The circulation and moisture transport changes suggest the increased precipitation in the Southeast during spring may be related to changes in the SALLJ and SAAC, which both enhance moisture transport to the Southeast. The seasonally dry Monsoon region is further affected by an increased threshold for convection in the warmer, more humid and stable climate of the 21st century, which combined with the circulation changes may weaken the onset of the rainy season. Although there is substantial variability among the models, and the results are represented by small changes compared with the multi-model variance, their statistical significance combined with their consistency with expected robust large scale changes provides a measure of confidence in otherwise tentative results. Further testing of the relationships presented here will be required to fully understand projected changes in the South American Monsoon.  相似文献   
44.
45.
An integrated study combining facies analysis, multiple group biostratigraphy, identification of depositional sequences and mapping has been conducted on the Miocene Molasse Basin of the external Alps (southeastern France). The filling of the basin is described as resulting from a succession of fluvial incisions subsequently filled during marine transgressions. The major incision is dated as Latest Burdigalian and the major transgression as Langhian. This revised interpretation of the Miocene physiographic evolution of the Molasse Basin implies a re-examination of previous stratigraphic correlations within the basin. To cite this article: D. Besson et al., C. R. Geoscience 337 (2005).  相似文献   
46.
New paleomagnetic results from Neogene sedimentary sequences from the Betic chain (Spain) are here presented. Sedimentary basins located in different areas were selected in order to obtain paleomagnetic data from structural domains that experienced different tectonic evolution during the Neogene. Whereas no rotations have been evidenced in the Late Tortonian sediments in the Guadalquivir foreland basin, clockwise vertical axis rotations have been measured in sedimentary basins located in the central part of the Betics: the Aquitanian to Messinian sediments in the Alcalà la Real basin and the Tortonian and Messinian sediments in the Granada basin. Moreover, counterclockwise vertical axis rotations, associated to left lateral strike-slip faults have been locally measured from sedimetary basins in the eastern Betics: the Middle Miocene to Lower Pliocene sites from the Lorca and Vera basins and, locally, the Tortonian units of the Huercal-Overa basin. Our results show that, conversely from what was believed up to now, paleomagnetic rotations continued in the Betics after Late Miocene, enhancing the role of vertical axis rotations in the recent tectonic evolution of the Gibraltar Arc.  相似文献   
47.
The theory of satellite loss resulting from a giant impact on Uranus (Parisi and Brunini 1997, Planet. Space Sci.45, 181-187) is revisited, in the light of the discovery of its five outer moons (Gladman et al. 1998, Nature392, 897-899; Gladman et al. 2000, Icarus147, 320-324; erratum 148, 320). Physical conditions and dynamical constraints in the great collision scenario and restrictions in the possible mechanisms for the origin of the outer uranian satellites are obtained from the knowledge of their actual orbital properties. We conclude that the existence of these moons implies that their origin must be connected to a breakup process. Other scenarios for their origin cast serious doubts on the occurrence of a giant collision at the end of Uranus' formation process to account for its large spin axis obliquity.  相似文献   
48.
49.
In the Central Andes of Argentina (30–37°S), snowmelt is the main source of freshwater, an essential natural resource for ~2.2 million people in the adjacent arid lowlands. In this region, Laguna Llancanelo collects the water inputs from the Malargüe endorheic basin. Previous studies concerning the annual and intra-annual variations of this lagoon and its relationship with regional climate are rare. We obtained a monthly record for the Laguna Llancanelo area (LLA, 1984–2013) using the modified normalized difference water index derived from Landsat images. Monthly LLA ranges between 35 km2 and 411 km2 and is significantly related to variations of the Río Malargüe, the main snow-fed tributary to the lagoon. There is no long-term relationship between LLA and local rainfall, but rapid increases in LLA result from heavy rainfall around the lagoon. Conversely, rapid reductions in LLA encompass periods with both reduced discharge from the Río Malargüe and low local rainfall. The LLA integrates moisture of both Pacific (snowfall in the upper Andes) and Atlantic (lowland rainfall) origins; therefore, we propose using LLA as an indicator of regional water balance.  相似文献   
50.
The complex morphodynamic interactions between nearshore, shoreface and dune systems are usually simplified by studying these zones and their associated processes in isolation. However, the established relationships between each of them suggests that an integrated approach is required to examine the genesis, evolution and adaptation of the entire morphodynamic system. The Cabopino dune system in the southern Spanish Mediterranean Sea provides a clear example of a linked morphodynamic system in which a relatively large dune system has been generated and grown through the supply of sediments from an adjacent littoral supply environment. Here, we present a conceptual model of how the nearshore has provided suitable conditions for beach and dune development. We purport that synchronization of sediment activation in the marine and aeolian sections of the system have played a major role in this microtidal setting in which temporal aspects are not only tied to storm action, but to large sedimentary features moving alongshore. © 2019 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号