首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   26篇
  国内免费   2篇
测绘学   18篇
大气科学   11篇
地球物理   167篇
地质学   161篇
海洋学   34篇
天文学   86篇
综合类   2篇
自然地理   22篇
  2023年   3篇
  2022年   4篇
  2021年   5篇
  2020年   6篇
  2019年   5篇
  2018年   19篇
  2017年   17篇
  2016年   22篇
  2015年   16篇
  2014年   21篇
  2013年   32篇
  2012年   19篇
  2011年   28篇
  2010年   30篇
  2009年   30篇
  2008年   33篇
  2007年   28篇
  2006年   15篇
  2005年   19篇
  2004年   22篇
  2003年   13篇
  2002年   9篇
  2001年   13篇
  2000年   10篇
  1999年   4篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1985年   5篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1977年   2篇
  1976年   2篇
  1963年   2篇
  1961年   1篇
  1953年   1篇
  1950年   1篇
  1940年   1篇
  1939年   1篇
排序方式: 共有501条查询结果,搜索用时 15 毫秒
441.
Several hydrated silicate deposits on Mars are observed within craters and are interpreted as excavated Noachian material. Toro crater (71.8°E, 17.0°N), located on the northern edge of the Syrtis Major Volcanic Plains, shows spectral and morphologic evidence of impact-induced hydrothermal activity. Spectroscopic observations were used to identify extensive hydrated silicate deposits, including prehnite, chlorites, smectites, and opaline material, a suite of phases that frequently results from hydrothermal alteration in terrestrial craters and also expected on Mars from geochemical modeling of hydrothermal environments. When combined with altimetry and high-resolution imaging data, these deposits appear associated predominantly with the central uplift and with portions of the northern part of the crater floor. Detailed geologic mapping of these deposits reveals geomorphic features that are consistent with hydrothermal activity that followed the impact event, including vent-like and conical mound structures, and a complex network of tectonic structures caused by fluid interactions such as fractures and joints. The crater age has been calculated from the cumulative crater size-frequency distributions and is found to be Early Hesperian. The evidence presented here provides support for impact-induced hydrothermal activity in Toro crater, that extends phyllosilicate formation processes beyond the Noachian era.  相似文献   
442.
Hydrogeochemistry of Roccamonfina volcano (Southern Italy)   总被引:1,自引:1,他引:0  
This is the first hydro-geochemical investigation carried out on the Roccamonfina Volcanic Complex groundwaters. The chemistry of Roccamonfina waters is defined by water–rock and water–rock–gas interactions. In fact, interactions between rocks of the first eruptive high-K formations and circulating groundwaters are recognized by high K concentrations. On the other hand, inverse concentration of calcium versus alkali metals is related to two different rock interactions occurring in different areas of the volcano: (a) within the caldera where groundwaters flow within latite and pyroclastic formations releasing calcium, and (b) similarly at the base of the volcano where groundwaters flowing from surrounding carbonates got strongly enriched in Ca. These geochemical processes are also associated with K (SE of caldera) and Mg/Ca (in sites located at the NE base of the volcano) decrease. Completely different dynamics occurs at Riardo groundwaters (SE). Here waters are the result of a mix between the Roccamonfina deep aquifer and the carbonate aquifer of the Riardo plain. Rich-CO2 emissions make these waters strongly mineralized. Minor elements show a similar geochemical behavior of major ions and are crucial defining interactions processes. The evolution of Roccamonfina groundwaters is also evident along the simultaneous enrichment of Ba, Sr, and Ca. Ba increase is the result of deep local carbonate alteration enhanced by CO2 emissions and, the lower Sr/Ca ratio, from 10 to 2 (ppb/ppm), is also due to the same process. In the light of our results the Roccamonfina aquifer can be schematically divided into two main reservoirs: (a) a superficial aquifer which basically follows the volcanic structure morphology and tectonics and (b) a deeper reservoir, originating within the oldest Roccamonfina volcano ultra potassic lavas and then flowing into the carbonate aquifers of the neighboring plain. Eventually, the chemistry of the Roccamonfina aquifer does not show any specific and visible pollution, contrary to what happens in the volcano surrounding plains. In fact, only 14% of the samples we collected (206) show a NO3 content >30 mg/l. These sites are all located at the base of the volcano, near the plain.  相似文献   
443.
Ultramafic rocks in contact to gneisses in the Mt. Hochwart HP mélange (Eastern Italian Alps) preserve a series of metasomatic mineral zones. A phlogopitite with minor tremolite and accessory zircon and apatite forms close to the gneiss (Zone 1). Zone 2 consists of tremolite, phlogopite and anthophyllite followed by Zone 3 with anthophyllite plus minor chlorite and talc. Zone 3 grades into an amphibole–garnet peridotite lens. This reaction zone has been generated by infiltration of hydrous fluids at T of 660–700 °C and P < 1.2 GPa, which occurred during exhumation of coupled continental crust and mantle peridotites.The reaction zone between a trace element-rich (gneiss) and a trace element depleted reservoir (peridotite) allows assessment of local trace element mobility in aqueous fluids. We present the results of in situ LA-ICP-MS trace element analysis of minerals from the reaction zone. Phlogopite is the main host for Large Ion Lithophile Elements (LILE) and contributes significantly to the Li, Ti, Nb, Ta, Pb and Sc budget. Anthophyllite is the main host for Li whereas all other trace elements including Rare Earth Elements (REE) are preferentially incorporated into tremolite. Combined with the abundance of these minerals over the contact zone, the mineral trace element data suggests that the LILE and REE were mobile on a small scale of a few centimetres only. Limited mobility of Ta, which is generally regarded as barely mobile in fluids, is documented in elevated contents of Ta in anthophyllite coupled with low Nb/Ta. The high Li content in minerals throughout the reaction zone suggests that Li was the most mobile element.The studied metasomatic zones mirror geochemical processes occurring in subduction zones at the slab–mantle interface. Phlogopite crystallization at the slab–mantle interface is an efficient mechanism to filter LILE from the aqueous fluid. Thus, such reaction zones, forming at temperatures < 660–700 °C, likely prevents that the typical slab signature with enriched LILE is transported by aqueous fluids over long distances in the mantle wedge. However, if coupled to the downgoing slab, phlogopite- and tremolite-rich rocks from such reaction zones might be able to act as carriers of trace elements and water into deeper parts of the subduction zone.  相似文献   
444.
The observations of Mars by the CRISM and OMEGA hyperspectral imaging spectrometers require correction for photometric, atmospheric and thermal effects prior to the interpretation of possible mineralogical features in the spectra. Here, we report on a simple, yet non-trivial, adaptation to the commonly-used volcano-scan correction technique for atmospheric CO2, which allows for the improved detection of minerals with intrinsic absorption bands at wavelengths between 1.9 and 2.1 μm. This volcano-scan technique removes the absorption bands of CO2 by ensuring that the Lambert albedo is the same at two wavelengths: 1.890 and 2.011 μm, with the first wavelength outside the CO2 gas bands and the second wavelength deep inside the CO2 gas bands. Our adaptation to the volcano-scan technique moves the first wavelength from 1.890 μm to be instead within the gas bands at 1.980 μm, and for CRISM data, our adaptation shifts the second wavelength slightly, to 2.007 μm. We also report on our efforts to account for a slight ∼0.001 μm shift in wavelengths due to thermal effects in the CRISM instrument.  相似文献   
445.
Considering the model of the initial disc of planetesimals consisting of 10,038 test particles, we simulated the formation of small-body reservoirs in the outer Solar System for the 2-Gyr period. We present the results from the simulation, which concern the part of the scattered disc with objects that have the semi-major axes larger than 50 AU and do not cross the Neptune’s orbit. A suitable border between the scattered disc and the inner Oort cloud, in terms of semi-major axis, appears to be no more than 2,500 AU. The simulated and observed values of perihelion distance and inclination to the Ecliptic typically cover the range between 30 and 40 AU and from 0° to 30°, respectively. No simulated or observed values of the inclination exceed 45°. The distributions of eccentricity and inclination in the simulation are more consistent with their observed counterparts, if the primary observational selection effects are imitated in the simulated distributions.  相似文献   
446.
447.
We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about     dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N -body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology–radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.  相似文献   
448.
There is much evidence about the ancient presence of water on Mars and it is reasonable to suppose that simple forms of life may have developed during the geological evolution of the planet. In such a case traces of this extinct life could still be present on the planet in form of microfossils included into some geological layer. The rover payloads planned for the next decades will include spectrometers in order to accomplish various scientific tasks. In this respect, we have developed a quantitative model for microfossil inclusions into a crystalline matrix. Such a method foresees some visible effects on measurements obtained via spectroscopic techniques such as infrared reflectance and Raman spectroscopy. In this work we present the quantitative model of the fossilization process and the effects that the microfossil inclusions should have in the real spectra, evaluated by means of computer simulations. Preliminary measurements, in order to provide examples of future model testing, have been performed on samples of homogeneous composition, but with detectable microfossils content, collected at the K–T sequence placed near Gubbio (Italy). The preliminary results are presented and discussed in order to investigate the potential application of such spectroscopic techniques for the detection of extinct life.  相似文献   
449.
An accurate measurement of the gravitational field of the Sun, needed for the verification of the theories of gravitation, requires the use of a geodesic test body. To eliminate the effect of non-gravitational forces (mainly the solar radiation pressure) we propose to use two twin space probes, whose surface has identical geometrical and optical properties, but with different mass. Their differential motion leads to the determination of the motion of an ideal geodesic point. We discuss in detail the various conditions which are needed to ensure the required degree of identity and submit as a possible solution two cylindrical probes, whose sides are covered by cavities to make them absorbing, rotating at a fast rate around an axis orthogonal to the ecliptic plane. We discuss briefly also the accuracy in the determination of the parameters of the metric field of the Sun obtainable from range measurements.Work done at the European Space Research Institute, Frascati, Italy  相似文献   
450.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号