首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   6篇
  国内免费   2篇
大气科学   2篇
地球物理   42篇
地质学   67篇
海洋学   25篇
天文学   14篇
自然地理   7篇
  2021年   2篇
  2020年   6篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   6篇
  2012年   4篇
  2011年   14篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   7篇
  2006年   3篇
  2005年   8篇
  2004年   7篇
  2003年   4篇
  2002年   7篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1971年   1篇
  1970年   2篇
  1941年   2篇
排序方式: 共有157条查询结果,搜索用时 31 毫秒
101.
K‐Ar ages of authigenic illite from two drill‐core gouge samples of a fault in the Palaeoproterozoic basement of Finland record two distinct faulting events. The older sample yields apparent ages from 1240 ± 26 to 1006 ± 21 Ma for four grain size fractions between 6 and <0.1 μm. The second sample is structurally younger and yields statistically distinct ages ranging from 978 ± 20 to 886 ± 18 Ma. We interpret the ages of the <0.1 m fractions, which are the youngest, as representing the actual time of faulting. XRD analysis and age modelling exclude significant age contamination of the finest dated fractions with inherited host rock components. These results provide therefore an example of meaningful isotopic dating of illite‐type clay material formed during Precambrian faulting, demonstrate and constrain fault reactivation and give evidence for brittle Sveconorwegian Mesoproterozoic shortening and Neoproterozoic extension in Fennoscandia.  相似文献   
102.
The hexa-aqua complexes [Fe(H2O)6−mn(OH)n](2−n)+n = 0 → 3, m = 0 → 6 − n; [Fe(H2O)6−mn(OH)n](3−n)+n = 0 → 4, m = 0 → 6 − n were investigated by ab-initio methods with the aim of determining their ground-state geometries, total energies and vibrational properties by treating their inner solvation shell as part of their gaseous precursor1 (or “hybrid approach”). After a gas-phase energy optimization within the Density Functional Theory (DFT), the molecules were surrounded by a dielectric representing the Reaction Field through an implicit Polarized Continuum Model (PCM). The exploration of several structural ligand arrangements allowed us to quantify the relative stabilities of the various ionic species and the role of the various forms of energy (solute-solvent electronic interaction, cavitation, dispersion, repulsion, liberation free energy) that contribute to stabilize the aqueous complexes. A comparison with experimental thermochemistries showed that ab-initio gas-phase + solvation energies are quite consistent with experimental evidence and allow the depiction of the most stable form in solution and the eventual configurational disorder of water/hydroxyl species around central cations. A vibrational analysis performed on the 54Fe, 56Fe, 57Fe and 58Fe isotopomers indicated important separative effects systematically affected by the extent of deprotonation. The role of the system’s redox state (fO2) and acidity (pH) on the isotopic imprinting of the aqueous species in solution was investigated by coupling the separative effects with speciation calculations. The observed systematics provided a tool of general utility in the interpretation of the iron isotopic signature of natural waters. Applications to the interpretation of isotopic fractionation in solution dictated by redox equilibria and to the significance of the Fe-isotopic imprinting of Banded Iron Formations are given.  相似文献   
103.
A portion of an unconfined alluvial aquifer located in the Padana Plain (Italy) was characterized following an integrated hydro-geophysical approach. Initially an electrical resistivity tomography (ERT) survey was employed to localize the boundaries of a modest paleo-channel body and to design the installation of a groundwater monitoring network. Multilevel slug-tests were performed to estimate the aquifer’s saturated hydraulic conductivities. Determined permeability values together with electrical resistivity data were correlated. The correlation resulted in a site specific bi-logarithmic linear relationship. Based on this relationship, punctually determined hydraulic conductivities were spatially extended over the studied flow domain. Finally, continuously measured piezometric heads were used to calibrate a 3D flow model. Sensitivity analysis was performed to confirm the reliability of the reconstructed permeability field, as well as, to assess the minimum number of direct measurements needed to safely characterize the selected aquifer portion. The integration of the ERT survey results with the classical hydrogeological tests can be conveniently applied to constrain the permeability field during flow model calibration. Although the applicability of the determined relationship is site specific, the followed procedure is useful especially when there is a need to optimize the available resources and in case of small-scale pilot studies.  相似文献   
104.
105.
The city of Benevento (Southern Italy) has been repeatedly struck by large historical earthquakes. A heterogeneous geologic structure and widespread soft soil conditions make the estimation of site effects crucial for the seismic hazard assessment of the city. From 2000 until 2004, we installed seismic stations to collect earthquake data over zones with different geological conditions. Despite the high level of urban noise, we recorded more than 150 earthquakes at twelve sites. This data set yields the first, well documented experimental evidence for weak to moderate local amplifications. We investigated site effects primarily by the classical spectral ratio technique (CSR) using a rock station placed on the Benevento hill as reference. All sites in the Calore river valley and in the eastern part of the Benevento hill show a moderate high-frequency (f > 4 Hz) amplification peak. Conversely, sites in the Sabato river valley share weak-to-moderate amplification in a wide frequency band (from 1–2 to 7–10 Hz), without evident frequency peaks. Application of no-reference-site techniques to earthquake and noise data confirms the results of the CSRs in the sites of the Calore river valley and of the eastern part of the Benevento hill, but fails in providing indications for site effects in the Sabato river valley, being the H/V ratios nearly flat. One-dimensional modeling indicates that the ground motion amplification can be essentially explained in terms of a vertically varying geologic structure. High-frequency narrow peaks are caused by the strong impedance contrast existing between near-surface soft deposits and stiff cemented conglomerates. Conversely, broad-band amplifications in the Sabato river valley are likely due to a more complex layering with weak impedance contrasts both in the shallow and deep structure of the valley.  相似文献   
106.
We investigated the impacts on buildings of three pyroclastic surges that struck three separate villages on 25 June, 21 September and 26 December, 1997, during the course of the andesitic dome building eruption of the Soufrière Hills Volcano, Montserrat, which began on 18 July, 1995. A detailed analysis of the building damage of the 26 December event was used to compare the findings on the flow and behaviour of dilute pyroclastic density currents (PDCs) with the classical reports of PDCs from historical eruptions of similar size. The main characteristics of the PDC, as inferred from the building damage, were the lateral loading and directionality of the current; the impacts corresponded to the dynamic pressure of the PDC, with a relatively slow rate of rise and without the peak overpressure or a shock front associated with explosive blast; and the entrainment of missiles and ground materials which greatly added to the destructiveness of the PDC. The high temperature of the ash, causing the rapid ignition of furniture and other combustibles, was a major cause of damage even where the dynamic pressure was low at the periphery of the current. The vulnerability of buildings lay in the openings, mainly windows, which allowed the current to enter the building envelope, and in the flammable contents, as well as the lack of resistance to the intense heat and dynamic pressure of some types of vernacular building construction, such as wooden chattel houses, rubble masonry walls and galvanised steel-sheet roofs. Marked variability in the level of damage due to dynamic pressure (in a range 1–5 kPa, or more) was evident throughout most of the impact area, except for the zone of total loss, and this was attributable to the effects of topography and sheltering, and projectiles, and probably localised variations in current velocity and density. A marked velocity gradient existed from the outer part to the central axis of the PDC, where buildings and vegetation were razed to the ground. The gradient correlated with the impacts due to lateral loading and heat transfer, as well as the size of the projectiles, whilst the temperature of the ash in the undiluted PDC was probably uniform across the impact area. The main hazard characteristics of the PDCs were very consistent with those described by other authors in the classic eruptions of Pelée (1902), Lamington (1951) and St Helens (1980), despite differences in the eruptive styles and scales. We devised for the first time a building damage scale for dynamic pressure which can be used in research and in future volcanic emergencies for modelling PDCs and making informed judgements on their potential impacts. Editorial responsibility: T. Druitt  相似文献   
107.
Sparry and microcrystalline magnesite are minor constituents of the Upper Triassic Burano Evaporite Formation of the northern Apennines in Italy. Petrography and geochemistry of magnesite suggest three modes of formation. (1) Evaporitic precipitation of stratified microcrystalline magnesite layers associated with sulfate and carbonate rocks. Most REE are below ICP-MS detection limits. '18O is +20.2‰ (SMOW) and '13C is -2.6‰ (PDB). (2) Hydrothermal infill of Fe-rich (9.78 wt% FeO) lenticular sparry magnesite. This type of magnesite is characterized by very low LREE concentrations, whereas HREEs are relatively high. The fluid inclusion composition is NaCl-MgCl2-H2O, salinity is ~30 wt% NaCl equiv., and total homogenization temperatures range from 204-309 °C; '18O is +17.5‰ and '13C is +1‰. (3) The partial or total replacement of dolostones by lenticular sparry magnesite. LREEs are lower in magnesite compared with the partly replaced dolostones. Magnesite yields '18O and '13C compositions of +17.3 to +23.6‰ and +0.5 to +1.4‰, respectively, whereas the partly replaced dolostones yield '18O and '13C values of +25.0 to +26.2 and +1.3 to +1.9, respectively. Complete replacement of dolostones produced massive lenticular sparry magnesite rock containing ooids and axe-head anhydrite relicts; LREEs are depleted compared to unaffected dolostones; '18O and '13C compositions range from +16.4 to +18.4‰ and +0.4 to +0.9‰, respectively. These data and the association between fracture-filling and replacive magnesite suggests a metasomatic system induced by hydrothermal circulation of hot and saline Mg-rich fluids. These processes probably occurred in the Oligocene-Miocene, when the Burano Formation acted as main detachment horizon for the Tuscan Nappe during the greenschist facies metamorphism of the Apuane complex. Thrusting over the Apuane zone produced large scale fluid flow focused at the Tuscan Nappe front. Sources of Mg-rich fluids were metamorphic reactions in the Apuane complex and dissolution of Mg-salts at the thrust front. Considering a maximum tectonic burial depth of 10 km, as inferred from the geometry of the chain, the pressure-corrected temperature of magnesite precipitation (380 to 400 °C) and the calculated fluid composition ('18O=+13.3ǃ.2‰) are in the range of the published Apuane metamorphic temperatures (300-450 °C) and fluid compositions ('18O=7-16‰). The results of this study support the hydrothermal-metasomatic model for the formation of sparry magnesite deposits at the expense of dolostone units involved in thrusting and low-grade metamorphism, as proposed for the Northern Graywacke Zone (Alps) and the Eugui deposit (western Pyrenees).  相似文献   
108.
The main steps of the sedimentary evolution of the west Lombardian South Alpine foredeep between the Eocene and the Early Miocene are described. The oldest is a Bartonian carbonate decrease in hemipelagic sediments linked with an increase in terrigenous input, possibly related to a rainfall increase in the Alps. Between the Middle Eocene and the early Chattian, a volcanoclastic input is associated with an extensional tectonic regime, coeval with magma emplacement in the southern-central Alps, and with volcanogenic deposits of the European foredeep and Apennines, suggesting a regional extensional tectonic phase leading to the ascent of magma. During Late Eocene to Early Oligocene, two periods of coarse clastic sedimentation occurred, probably controlled by eustasy. The first, during Late Eocene, fed by a local South Alpine source, the second, earliest Oligocene in age, supplied by the Central Alps. In the Chattian, a strong increase in coarse supply records the massive erosion of Central Alps, coupled with a structures growth phase in the subsurface; it was followed by an Aquitanian rearrangement of the Alpine drainage systems suggested by both petrography of clastic sediments and retreat of depositional systems, while subsurface sheet-like geometry of Aquitanian turbidites marks a strong decrease in tectonic activity.  相似文献   
109.
110.
Analysis of some sedimentary series near Rome and comparison with other series in northern and southern Italy give evidence that Arctica islandica, considered a marker species for the beginning of the Pleistocene, appears during the Re´union paleomagnetic event (about 2 my ago). A period of erosion, called the Aullan erosional phase, is evident in the lower part of the late Villafranchian (= early Pleistocene, Olivola faunal unit).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号