首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   2篇
  国内免费   1篇
大气科学   2篇
地球物理   45篇
地质学   67篇
海洋学   26篇
天文学   14篇
自然地理   7篇
  2024年   1篇
  2021年   2篇
  2020年   6篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   6篇
  2012年   4篇
  2011年   14篇
  2010年   8篇
  2009年   8篇
  2008年   8篇
  2007年   7篇
  2006年   3篇
  2005年   8篇
  2004年   7篇
  2003年   4篇
  2002年   7篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1971年   1篇
  1970年   2篇
  1941年   2篇
排序方式: 共有161条查询结果,搜索用时 53 毫秒
1.
2.
    
Granular soils subjected to seepage flow may suffer suffusion, ie, a selective internal erosion. Extending the classical approach of poromechanics, we deduce a new form of the Clausius-Duhem inequality accounting for dissipation due to suffusion, and we deduce restrictions on the constitutive laws of the soil. We suggest (a) a possible coupling between the seepage forces and the suffusion kinetics and (b) an extension of an existing elastoplastic model for the skeleton mechanical behaviour. Numerical integrations of the elastoplastic model are carried out under drained axisymmetric triaxial and oedometric conditions. As a result, we prove that the extended model is able to qualitatively reproduce the suffusion induced strains and the strength reduction experimentally observed. Predictions on the oedometric behaviour of suffusive soils are also provided.  相似文献   
3.
Fluid inclusion studies in combination with hydrogen, oxygen and sulphur isotope data provide novel insights into the genesis of giant amethyst-bearing geodes in Early Cretaceous Paraná continental flood basalts at Amestita do Sul, Brazil. Monophase liquid inclusions in colourless quartz, amethyst, calcite, barite and gypsum were analysed by microthermometry after stimulating bubble nucleation using single femtosecond laser pulses. The salinity of the fluid inclusions was determined from ice-melting temperatures and a combination of prograde and retrograde homogenisation temperatures via the density maximum of the aqueous solutions. Four mineralisation stages are distinguished. In stage I, celadonite, chalcedony and pyrite formed under reducing conditions in a thermally stable environment. Low δ34SV-CDT values of pyrite (?25 to ?32?‰) suggest biogenic sulphate reduction by organotrophic bacteria. During the subsequent stages II (amethyst, goethite and anhydrite), III (early subhedral calcite) and IV (barite, late subhedral calcite and gypsum), the oxidation state of the fluid changed towards more oxidising conditions and microbial sulphate reduction ceased. Three distinct modes of fluid salinities around 5.3, 3.4 and 0.3 wt% NaCl-equivalent characterise the mineralisation stages II, III and IV, respectively. The salinity of the stage I fluid is unknown due to lack of fluid inclusions. Variation in homogenisation temperatures and in δ18O values of amethyst show evidence of repeated pulses of ascending hydrothermal fluids of up to 80–90 °C infiltrating a basaltic host rock of less than 45 °C. Colourless quartz and amethyst formed at temperatures between 40 and 80 °C, while the different calcite generations and late gypsum precipitated at temperatures below 45 °C. Calculated oxygen isotope composition of the amethyst-precipitating fluid in combination with δD values of amethyst-hosted fluid inclusions (?59 to ?51?‰) show a significant 18O-shift from the meteoric water line. This 18O-shift, high salinities of the fluid inclusions with chloride-sulphate composition, and high δ34S values of anhydrite and barite (7.5 to 9.9?‰) suggest that sedimentary brines from deeper parts of the Guaraní aquifer system must have been responsible for the amethyst mineralisation.  相似文献   
4.
Zusammenfassung Die Schwazer Augengneise (Kellerjoch-Gneise) und die Steinkogelschiefer wurden petrographisch und geochronologisch untersucht. Die Steinkogelschiefer und die Schwazer Augengneise zeigen eine prograde Metamorphose der Amphibolitfazies. Sie liegen auf den schwächer metamorphen Innsbrucker Quarzphylliten und unter den ebenfalls schwächer metamorphen Gesteinen der Grauwackenzone, nördlich der westlichen Hohen Tauern (Tirol, Salzburg, Österreich). Aufgrund des kombinierten Compston-Jeffery- und Nicolaysen-Diagramms ist das Sedimentationsalter des Eduktes der Steinkogelschiefer 540 Mio. Jahre. Das Alter der Platznahme des Eduktes der Schwazer Augengneise ist wahrscheinlich 425 Mio. Jahre. Eine kaledonische Metamorphose ist nicht nachweisbar.Die herzynische Metamorphose verursachte sowohl in den Schwazer Augengneisen als auch in den Steinkogelschiefern eine vollständige Sr-Homogenisierung im Gesamtgestein. Die Rb-Sr-Isochrone der Schwazer Augengneise ergibt ein Alter von 322±24 Mio. Jahren bei einem Sr87/Sr86-Isotopenverhältnis von 0.7180±0.0024. Die Rb-Sr-Isochrone der Steinkogelschiefer definiert ein Alter von 347±30 Mio. Jahren, bei einem Sr87/Sr86-Verhältnis von 0.7150±0.0021. Die herzynischen Phengite aus den Schwazer Augengneisen ergeben mit der Rb-Sr-Methode ein Abkühlungsalter von 273 bzw. 260 Mio. Jahren. Die K-Ar-Phengit- und Muscovitalter sind Mischalter, welche zwischen dem Alter der herzynischen und dem der frühalpinen Metamorphose liegen. Das frühalpine Ereignis wird durch Rb-Sr-Biotitalter um 90 Mio. Jahre erfaßt. Dieses Alter entspricht dem Zeitpunkt der Abkühlung der Gesteine unter 300 °C vor dem frühalpinen Deckenschub.Die K-Ar-Alter der Biotite sind geologisch nicht interpretierbar, da sie Ar-Überschuß zeigen.Die Überlagerung der Innsbrucker Quarzphyllite durch die Steinkogelschiefer und die Schwazer Augengneise ist wahrscheinlich das Ergebnis eines herzynischen Deckenbaus. Die Steinkogelschiefer und die Schwazer Augengneise könnten daher nicht zur mittelostalpinen Deckeneinheit gehören, sondern tektonisch gesehen, Teil des unterlagernden unterostalpinen Innsbrucker Quarzphyllites sein.
Petrology and geochronology of the Schwazer Augengneis (Kellerjochgneis) and of the Steinkogelschiefer north of the western Tauern Window have been investigated. The Steinkogelschiefer are garnet-mica schists, the Schwazer Augengneis is an orthoaugengneiss. Both rock units show a prograde metamorphism of the amphibolite facies and are interbedded between the Innsbrucker Quarzphyllite and the Grauwackenzone. The Innsbrucker Quarzphyllite and the rocks of the Grauwackenzone clearly show in respect to the Schwazer Augengneis and the rocks of the Steinkogelschiefer unit a lower metamorphic grade of the greenschist facies. From combined Compston-Jeffery- and Nicolaysen-diagrams the age of the sediments from which the mica schists of the Steinkogelschiefer unit derives is 540 m. y. The age of the intrusion of the magma from which the Schwazer orthoaugengneis later originated is probably 425 m. y. A Caledonian metamorphism could not be demonstrated by radiometry. In the Schwazer Augengneis as well as in the paragneisses of the Steinkogelschiefer unit a complete Sr-homogenisation was produced by the hercynian metamorphism. An age of 322±24 m. y. and a Sr87/Sr86-ratio of 0.7180±0.0024 result from a Rb-Sr-Isochrone of the Schwazer Augengneis. The RbSr-Isochrone of the Steinkogelschiefer defines an age of 347±30 m. y. and a Sr87/Sr86-ratio of 0.7150±0.0021. From the Rb-Sr-method a cooling age of 273 and 260 m. y. is established for the phengites from the Schwazer Augengneis.K-Ar-ages of the muscovites and of the phengites are mixed ages between the hercynian and that of the eoalpine metamorphism. The eoalpine metamorphism is dated by the Rb-Sr-age of the biotites (90 m. y.). This age corresponds to the cooling of the rocks below a temperature of 300 °C before the eoalpine nappe transport.K-Ar-ages of the biotites show excess argon and are therefore from a geological point of view meaningless. From petrological and geochronological data it cannot be demonstrated that the tectonic position of the Schwazer Augengneis and of the Steinkogelschiefer unit on the top of the Innsbrucker Quarzphyllit and under the Grauwackenzone is due to the alpine nappe transport.From a tectonic point of view, the Steinkogelschiefer and the Schwazer Augengneis therefore probably belongs to the middle austroalpine unit of the Innsbrucker Quarzphyllit.

Résumé Les gneiss oeillés de Schwaz (Kellerjochgneise) et les schistes de Steinkogel ont été étudiés par voie pétrographique et géochronologique.Tous deux montrent une métamorphose progradée du facies amphibolite. Ils reposent sur la série moins métamorphique des »Innsbrucker Quarzphyllit« et sous la Zone des grauwackes, également peu métamorphiques, au nord des »Hohe Tauern« occidentales Tyrol, Salzbourg, Autriche).Selon le diagramme combiné Compston-Jeffery et Nicolaysen l'âge de la sédimentation des schistes de Steinkogel est de 540 Mio. ans. L'âge de la sédimentation des gneiss oeillés de Schwaz est probablement 425 Mio. ans. Un métamorphisme calédonien ne peut être démontré.Le métamorphisme hercynien a causé — tant dans les gneiss oeillés de Schwaz que dans les schistes de Steinkogel — une homogénisation complète du Sic. L'isochrone RB/Sr des gneiss oeillés de Schwaz indique une âge de 322±24 Mio. ans et un rapport Sr87/Sr86 de 0.7180±0.0024.L'isochrone Rb/Sr des schistes de Steinkogel indique un âge de 347±30 Mio. et un rapport Sr87/Sr86 de 0.7150±0.0021. Les phengites hercyniennes dans les gneiss oeillés de Schwaz indiquent, selon la méthode Rb/Sr, un âge de refroidissement de 273 et 260 Mio. ans. Les âges K/Ar de la phengite et la muscovite sont des âges mixtes compris entre celui du métamorphisme hercynien et celui du métamorphisme évalpin.L'éveénement éoalpin est évalué à 90 Mio. ans (Rb/Sr-biotite). Cet âge correspond au moment du refroidissement des roches en-dessous de 300 °C avant al poussée des premières nappes alpines.Les âges K-Ar des biotites ne peuvent pas être interpretés géologiquement étant donné pu'ils montrent un excès d'Ar.Le recouvrement de l'»Innsbrucker Quarzphyllit« par les schistes de Steinkogel et les gneiss oeillés de Schwaz est probablement le résultat d'une tectonique hercynienne. Il en résulte que les schistes de Steinkogel et les gneiss oeillés de Schwaz ne pourraient pas faire partie de l'ensemble de la nappe austroalpine moyenne, mais vus tectoniquement, être une partie de la nappe austroalpine inférieure sous-jacente de l'»Innsbrucker Quarzphyllit«.

(Kellerjoch-Gneise) Steinkogel. . - — , (, , ). Comston-Jeffery Nicolaysen'a , SteinKogel'a, 540 . , , , , 425 . . . - 322±24 Sr87/Sr8b 0,7180±0,0024. Steinkogel'a 347±30 0,7150± 0,0021. - 273–260 . , -, - . , -, - 90 . 300° , - . , . . . - Steinkogel'a , , . - , , , -- .
  相似文献   
5.
    
The compositional variability of the lithospheric mantle at extensional settings is largely caused by the reactive percolation of uprising melts in the thermal boundary layer and in lithospheric environments.The Alpine-Apennine(A-A)ophiolites are predominantly constituted by mantle peridotites and are widely thought to represent analogs of the oceanic lithosphere formed at ocean/continent transition and slow-to ultraslow-spreading settings.Structural and geochemical studies on the A-A mantle peridotites have revealed that they preserve significant compositional and isotopic heterogeneity at variable scale,reflecting a long-lived multi-stage melt migration,intrusion and melt-rock interaction history,occurred at different lithospheric depths during progressive uplift.The A-A mantle peridotites thus constitute a unique window on mantle dynamics and lithosphere-asthenosphere interactions in very slow spreading environments.In this work,we review field,microstructural and chemical-isotopic evidence on the major stages of melt percolation and melt-rock interaction recorded by the A-A peridotites and discuss their consequences in creating chemical-isotopic heterogeneities at variable scales and enhancing weakening and deformation of the extending mantle.Focus will be on three most important stages:(i)old(pre-Jurassic)pyroxenite emplacement,and the significant isotopic modification induced in the host mantle by pyroxenite-derived melts,(ii)melt-peridotite interactions during Jurassic mantle exhumation,i.e.the open-system reactive porous flow at spinel facies depths causing bulk depletion(origin of reactive harzburgites and dunites),and the shallower melt impregnation which originated plagioclase-rich peridotites and an overall mantle refertilization.We infer that migrating melts largely originated as shallow,variably depleted,melt fractions,and acquired Si-rich composition by reactive dissolution of mantle pyroxenes during upward migration.Such melt-rock reaction processes share significant similarities with those documented in modern oceanic peridotites from slow-to ultraslow-spreading environments and track the progressive exhumation of large mantle sectors at shallow depths in oceanic settings where a thicker thermal boundary layer exists,as a consequence of slow-spreading rate.  相似文献   
6.
We review the presence and signatures of the non-equilibrium processes, both non-Maxwellian distributions and non-equilibrium ionization, in the solar transition region, corona, solar wind, and flares. Basic properties of the non-Maxwellian distributions are described together with their influence on the heat flux as well as on the rates of individual collisional processes and the resulting optically thin synthetic spectra. Constraints on the presence of high-energy electrons from observations are reviewed, including positive detection of non-Maxwellian distributions in the solar corona, transition region, flares, and wind. Occurrence of non-equilibrium ionization is reviewed as well, especially in connection to hydrodynamic and generalized collisional-radiative modeling. Predicted spectroscopic signatures of non-equilibrium ionization depending on the assumed plasma conditions are summarized. Finally, we discuss the future remote-sensing instrumentation that can be used for the detection of these non-equilibrium phenomena in various spectral ranges.  相似文献   
7.
Results of the chemical investigation on the Bannock and Tyro Basins are reported.Both basins were found to be hypersaline ( 10 times higher than salinity of normal seawater) and anoxic. In all investigated basins a region of transition, a few meters thick, was identified at depths > 3327 dbar. It is characterized by a sharp gradient of salinity, and all concentrations of analysed species increase strongly except for dissolved oxygen and nitrate, which immediately drop to zero. This region appears as a sharp boundary that prevents mixing. As a result, in the presence of organic matter, an anoxic condition developed with the complete depletion of dissolved oxygen. At the same time, hydrogen sulphide and ammonium accumulated within the brine. Between the Bannock and the Tyro brines differences occur in the measured concentrations of H2S, SO2−4, Ca2+ and NH3. There are some differences also within the Bannock area sub-basins.The Libeccio sub-basin, in the Bannock area, contains a double-layered brine: the upper layer is 140 dbar thick and the lower layer is 300 dbar thick. A second interface between upper and lower brines develops at a depth of 3500 dbar. Nearly all of the measured concentrations vs. depth show the double layer, with the exception of ammonium, the concentration of which remains nearly constant throughout the anoxic column. Profiles of the other species analyzed show remarkable differences on passing from the upper to the lower brine. Hydrogen sulphide, sulphate and fluoride concentrations appear constant and then increase at the second interface. The calcium concentration is also constant in the upper brine, but decreases at the second interface. Total alkalinity and phosphate concentrations show a maximum peak just below the first interface. However, after passing through the second interface all the chemical parameters exhibit an almost constant behaviour down to the bottom.Hypersaline conditions are attributed to the dissolution of Messinian evaporite, and anoxia is suggested to originate from the oxidation of organic matter present in sediments and from the absence of bottom water circulation in such a deep and enclosed environment.The chemical conditions can be summarized as follows: in the Libeccio Basin the values for the species analysed have the ranges: 39–321 psu for ‘salinity’, 8.2−6.5 for pH, 2.7–4.0 mM for total alkalinity, 0.2-0 mM for dissolved oxygen, 0–1669 μM for hydrogen sulphide, 0–198 μM for thiol, 31–99 mM for sulphate, 11–21 mM for calcium, 7–100 μM for fluoride, 0.2–3080 μM for ammonium, 5.8-0 μM for nitrite, 0.2–12 μM for phosphate and 8–130 μM for silicate.  相似文献   
8.
Sequestration of large quantities of vitellogenin (VTG) is critical for proper oocyte development in most oviparous vertebrates. While previous studies have shown a general correlation between oocyte growth and the accumulation of various exogenous and endogenous ligands, few studies have attempted to elucidate the role VTG plays in this maternal transfer. In the present study, we have demonstrated that oocytic accumulation of [3H]-2,3,7,8-tetrachlorodibenzo-p-dioxin (3H-TCDD) and [14C]-benzo(a)pyrene (14C-BaP) by gravid Fundulus heteroclitus is directly correlated with oocyte maturational status. A positive correlation was observed between oocyte maturational state (size) and both total quantity (total pmoles) as well as concentration (pmoles/g tissue) of TCDD and BaP. Further, the bi-phasic accumulation of both TCDD and BaP mirrors that previously observed for protein sequestration by cultured Fundulus oocytes. Additionally, both TCDD and BaP were associated with VTG in vivo. HPLC analysis of serum extracts has shown that VTG associates with both parent BaP and BaP metabolites. Studies with 125I-T4 (thyroxine) also suggest that this critical hormone also associates with VTG in vivo. Ongoing studies are examining the VTG-associated transport and oocytic sequestration of 125I-T4 in gravid Fundulus.  相似文献   
9.
The southwestern part of the Scotia Sea, at the corner of the Shackleton Fracture Zone with the South Scotia Ridge has been investigated, combining marine magnetic profiles, multichannel seismic reflection data, and satellite-derived gravity anomaly data. From the integrated analysis of data, we identified the presence of the oldest part of the crust in this sector, which tentative age is older than anomaly C10 (28.7 Ma). The area is surrounded by structural features clearly imaged by seismic data, which correspond to gravity lows in the satellite-derived map, and presents a rhomboid-shaped geometry. Along its southern boundary, structural features related to convergence and possible incipient subduction beneath the continental South Scotia Ridge have been evidenced from the seismic profile. We interpret this area, now located at the edge of the south-western Scotia Sea, as a relict of ocean-like crust formed during an earlier, possibly diffuse and disorganized episode of spreading at the first onset of the Drake Passage opening. The successive episode of organized seafloor spreading responsible for the opening of the Drake Passage that definitively separated southern South America from the Antarctic Peninsula, instigated ridge-push forces that can account for the subduction-related structures found along the western part of the South Scotia Ridge. This seafloor accretion phase occurred from 27 to about 10 Ma, when spreading stopped in the western Scotia Sea Ridge, as resulted from the identification of the marine magnetic anomalies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号