排序方式: 共有51条查询结果,搜索用时 13 毫秒
21.
Imran Ahmad Dar K. Sankar Syed Tanzeem Shafi Mithas Ahmad Dar 《Arabian Journal of Geosciences》2012,5(2):259-262
An attempt has been made in this work to evaluate the environmental chemistry of groundwater in Thiruporur block, Kancheepuram District, Tamil Nadu, India. Eleven villages of Thiruporur block were selected; where the people use groundwater for drinking purpose, and the water samples were subjected to systematic analysis with a view to understand the potability of drinking water sources. The depth of the bore wells varied from 100 to 200?feet. The values obtained for different parameters were compared with the standard values given by ISI/ICMR/WHO and the variations were notable for the parameters like nitrate and total hardness for few samples. Therefore, a medical survey was carried out to study the harmful effects on the society due to these two parameters at the villages??Kayar and Melkottaiyar. 相似文献
22.
Imran Maqsood Guo H. Huang 《Stochastic Environmental Research and Risk Assessment (SERRA)》2013,27(3):643-657
This study introduces a hybrid optimization approach for flood management under multiple uncertainties. An inexact two-stage integer programming (ITIP) model and its dual formation are developed by integrating the concepts of mixed-integer and interval-parameter programming techniques into a general framework of two-stage stochastic programming. The proposed approach provides a linkage to pre-defined management policies, deals with capacity-expansion planning issues, and reflects various uncertainties expressed as probability distributions and discrete intervals for a flood management system. Penalties are imposed when the policies are violated. The marginal costs are determined based on dual formulation of the ITIP model, and their effects on the optimal solutions are investigated. The developed model is applied to a case study of flood management. The solutions of binary variables represent the decisions of flood-diversion–capacity expansion within a multi-region, multi-flow-level, and multi-option context. The solutions of continuous variables are related to decisions of flood diversion toward different regions. The solutions of dual variables indicate the decisions of marginal costs associated with the resources of regions’ capacity, water availability, and allowable diversions. The results show that the proposed approach could obtain reliable solutions and adequately support decision making in flood management. 相似文献
23.
An attempt has been made in this research work to evaluate the concentration of nitrate in groundwater and its management
in Apple town and its environs. Groundwater pollution has been reported in many aquifers because of high concentration of
nitrate in ground water, which is the result of excessive use of fertilizers to cropland. Systematic sampling was done, with
a view to understand the source of nitrate concentration in the study area. Fifteen sample sites were selected and the samples
were taken for a baseline study to understand the geochemistry of the study area and to assess its physicochemical characteristics.
The water quality parameters were investigated for summer (May, 2007) and winter (December, 2007) seasons and were compared
with the standard values given by ICMR / WHO. The hydrochemical data of 15 samples indicates that the concentration of almost
all parameters fall within the permissible limits except nitrate. Linear Trend Analysis on seasonal and annual basis clearly
depicted that nitrate pollution in the study area is increasing significantly. About 85% of samples during summer season and
67% of the samples during winter season were showing a high concentration of nitrate, exceeding permissible limit of WHO (50 mg/l),
which is due to the use of nitrogenous fertilizers in the study area. Appropriate methods for improving the water quality
and its management in the affected areas have been suggested. 相似文献
24.
ITOM: an interval-parameter two-stage optimization model for stochastic planning of water resources systems 总被引:3,自引:2,他引:3
Imran Maqsood Guohe Huang Yuefei Huang Bing Chen 《Stochastic Environmental Research and Risk Assessment (SERRA)》2005,19(2):125-133
Planning of water resources systems is often associated with many uncertain parameters and their interrelationships are complicated. Stochastic planning of water resources systems is vital under changing climate and increasing water scarcity. This study proposes an interval-parameter two-stage optimization model (ITOM) for water resources planning in an agricultural system under uncertainty. Compared with other optimization techniques, the proposed modeling approach offers two advantages: first, it provides a linkage to pre-defined water policies, and; second, it reflects uncertainties expressed as probability distributions and discrete intervals. The ITOM is applied to a case study of irrigation planning. Reasonable solutions are obtained, and a variety of decision alternatives are generated under different combinations of water shortages. It provides desired water-allocation patterns with respect to maximum system benefits and highest feasibility. Moreover, the modeling results indicate that an optimistic water policy corresponding to higher agricultural income may be subject to a higher risk of system-failure penalties; while, a too conservative policy may lead to wastage of irrigation supplies. 相似文献
25.
Textile wastewater contains huge quantities of nitrogen (N)‐containing azo‐dyes. Irrigation of crops with such wastewater adds toxic dyes into our healthy soils. One of the ways to prevent their entry to soils could be these waters after the dyes' biodegradation. Therefore, the present study was conducted to evaluate the impact of textile dyes on wheat growth, dye degradation efficiency of bacteria‐fungi consortium, and alleviation of dye toxicity in wheat by treatment with microbial consortium. Among dyes, Red‐S3B (3.19% N) was found to be the most toxic to germination and growth of seven‐day‐old wheat seedlings. Shewanella sp. NIAB‐BM15 and Aspergillus terreus NIAB‐FM10 were found to be efficient degraders of Red‐S3B. Their consortium completely decolorized 500 mg L?1 Red‐S3B within 4 h. Irrigation with Red‐S3B‐contaminated water after treatment with developed consortium increased root length, shoot length, root biomass, and shoot biomass of 30‐day‐old wheat seedlings by 47, 18, 6, and 25%, respectively, than untreated water. Moreover, irrigation after microbial treatment of dye‐contaminated water resulted in 20 and 51% increase in shoot N content and N uptake, respectively, than untreated water. Thus, co‐inoculation of bacteria and fungi could be a useful bioremediation strategy for the treatment of azo‐dye‐polluted water. 相似文献
26.
Correlation assessment and monitoring of the potential pollutants in the surface sediments of Pyeongchang River, Korea 总被引:1,自引:0,他引:1
The study provides a baseline for the assessment of the organic and inorganic pollution specially, heavy metal contamination in the surface sediments of Pyeongchang River,South Korea.The assessment of the study areas was done with respect to metal pollution load,ecological risk and geoaccumulated risk.Based upon the used indices,a priority index(Pindex) was used to rank the utmost contaminated sites.Though the concentrations of mercury in all sediments were below the guideline, the significant enriched contamination was observed by all applied indices.As expected,the values of pollution load index(PLI),ecological risk index(RI) and geoaccumulation risk index(Igeo) demonstrated lower heavy metal contamination in upstream areas compared to the downstream. Admittedly,sediments were unpolluted to slightly-polluted according to PLI while high to extremely high ecological risks were observed in several sediment samples.Furthermore,all the samples were uncontaminated as per Igeo.After simplification of Igeo,the Pindex,showed the utmost contaminated sediments with a value of 2.537.Notably,protective measures should be taken to the highly contaminated areas which are prioritized by Pindex Admittedly,the maximum concentrations of total organic carbon,total nitrogen,inorganic nitrogen,total phosphorous,inorganic phosphorous,calcium, magnesium,sodium and potassium were significantly observed as 7.8×104,3,185,36,1,032,3.7, 1,5163,2,881,669 and 4,076mg/kg accordingly. 相似文献
27.
A Greek oil-tanker ran aground, resulting in a huge oil spill along the costal areas of Karachi, Pakistan. The purpose of this study was to assess the lung function and follow up change after one year in subjects exposed to crude oil spill in sea water. It was a cross sectional study with follow up in 20 apparently healthy, non-smoking, male workers, who were exposed to a crude oil spill environment during oil cleaning operation. The exposed group was matched with 31 apparently healthy male control subjects. Pulmonary function test was performed using an electronic Spirometer. Subjects exposed to polluted air have significant reduction in forced vital capacity (FVC), forced expiratory volume in first second (FEV(1)), forced expiratory flow (FEF(25-75%)) and maximum voluntary ventilation (MVV) compared to their matched controls. This impairment was reversible and lung functions parameters were improved when the subjects were withdrawn from the polluted air environment. 相似文献
28.
Muhammad Imran Ashraf Na Li Xiaori Han Jinfeng Yang Yue Wang Shumao Fan Muhammad Irshad Qaisar Mahmood 《Arabian Journal of Geosciences》2017,10(13):289
In agricultural production, specific elements in soil and plants are very important for the soil quality and plant productivity. Trace elements and rare earth elements enter in agri-environment by the application of fertilizers and, through anthropogenic activities, pose important health impacts even at low concentration due to non-biodegradable nature with long half-life. The micro nutrients are essential for human body in a quantity most of less than 100 mg/day. The nutritional element uptake by plants is regulated by availability of the required elements and element accumulation ability of the plants. Therefore, this study was aimed to investigate the accumulation of trace and rare earth elements after long-term application of different fertilizers in soil and soybean uptake. The inorganic fertilizers (NKP) and pig manure were applied to maize-maize-soybean rotation in Alfisols (brown) soil since 1979. Atomic emission spectrometry along with inductively coupled plasma technique was applied to determine trace and rare earth elements. The accumulation pattern of trace elements (TEs) observed in soil was Ni > Co > Se > Mo and rare earth elements (REEs) was found as La > Nd > Tb > Y > Pr > Gd > Er > Yb > Lu. In soybean stem, the TE and REE concentrations were Se > Ni > Co > Mo and Pr > Gd > Er > Yb > Tb > Nd > Lu > La > Y, respectively. Elemental concentrations in the seed samples were Ni > Se > Mo > Co and Pr > Gd > Er > Yb > Tb > Nd > Lu > Y > La. The seed of soybean accumulated Co, Mo, Ni, Gd, Pr, Er, Lu, and Tb more than the stem. Higher concentrations of Se, Nd, Y, and Yb were found in soil. These elements were higher in soybean stem followed by the seed. However, these elements are within safe toxic level and light pollution level. 相似文献
29.
30.