首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1152篇
  免费   66篇
  国内免费   4篇
测绘学   14篇
大气科学   88篇
地球物理   331篇
地质学   441篇
海洋学   100篇
天文学   202篇
综合类   3篇
自然地理   43篇
  2023年   9篇
  2022年   7篇
  2021年   13篇
  2020年   16篇
  2019年   11篇
  2018年   44篇
  2017年   43篇
  2016年   68篇
  2015年   41篇
  2014年   67篇
  2013年   90篇
  2012年   61篇
  2011年   54篇
  2010年   56篇
  2009年   67篇
  2008年   45篇
  2007年   34篇
  2006年   28篇
  2005年   48篇
  2004年   35篇
  2003年   30篇
  2002年   22篇
  2001年   18篇
  2000年   11篇
  1999年   11篇
  1998年   15篇
  1997年   18篇
  1996年   14篇
  1995年   19篇
  1994年   12篇
  1993年   10篇
  1992年   7篇
  1991年   8篇
  1989年   6篇
  1988年   5篇
  1987年   6篇
  1985年   10篇
  1984年   13篇
  1983年   15篇
  1982年   12篇
  1981年   16篇
  1980年   6篇
  1979年   9篇
  1978年   12篇
  1977年   10篇
  1975年   8篇
  1974年   8篇
  1973年   5篇
  1972年   5篇
  1969年   9篇
排序方式: 共有1222条查询结果,搜索用时 46 毫秒
41.
The results of evolutionary computations for massive binary systems (initial masses of the primary 10M ) with mass ratios between 0.3 and 0.8 are summarized and compared with observations in order to verify how far one can go with the conservative assumption of mass exchange. It is found that conservative mass exchange leads to acceptable first-order models of W-R and massive X-ray binaries. However, the comparison between this theory and observation reveals that for the observed systems (W-R and X-ray binaries) a preference exists for low intial mass ratios; moreover, the X-ray luminosities of the theoretical models are systematically too low, though this may be due to the adopted wind model. In addition, the influences of several parameters (distance between the components, chemical composition, primary mass, mass ratio and atmosphere) are examined. These parameters influence the remnant mass and any further evolution only marginally. Attention is also given to the effect on the system parameters of a supernova explosion of the remnant of the mass-losing component. For a large range of systems a disruption probability smaller than 25% is found.  相似文献   
42.
The Visible and Near Infrared (VNIR) is one of the modules of EChO, the Exoplanets Characterization Observatory proposed to ESA for an M-class mission. EChO is aimed to observe planets while transiting by their suns. Then the instrument had to be designed to assure a high efficiency over the whole spectral range. In fact, it has to be able to observe stars with an apparent magnitude Mv?=?9–12 and to see contrasts of the order of 10?4–10?5 necessary to reveal the characteristics of the atmospheres of the exoplanets under investigation. VNIR is a spectrometer in a cross-dispersed configuration, covering the 0.4–2.5 μm spectral range with a resolving power of about 330 and a field of view of 2 arcsec. It is functionally split into two channels respectively working in the 0.4–1.0 μm and 1.0–2.5 μm spectral ranges. Such a solution is imposed by the fact the light at short wavelengths has to be shared with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars under observation. The spectrometer makes use of a HgCdTe detector of 512 by 512 pixels, 18 μm pitch and working at a temperature of 45 K as the entire VNIR optical bench. The instrument has been interfaced to the telescope optics by two optical fibers, one per channel, to assure an easier coupling and an easier colocation of the instrument inside the EChO optical bench.  相似文献   
43.
Luciola is a large (1 km) “multi-aperture densified-pupil imaging interferometer”, or “hypertelescope” employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a “pupil densifier” micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having “hundreds of thousands of individual receivers”. With its high limiting magnitude, reaching the m v?=?30 limit of HST when 100 collectors of 25 cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1,200 Å ultra-violet to the 20 μm infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA’s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras (currently 200 to 1,000 nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade missions, the spectral coverage can be extended from 120 nm to 20 μm, using four detectors carried by two to four focal spacecraft. The number of collector mirrors in the flotilla can also be increased from 12 to 100 and possibly 1,000. The imaging and spectroscopy of habitable exoplanets in the mid infra-red then becomes feasible once the collecting area reaches 6 m2, using a specialized mid infra-red focal spacecraft. Calculations (Boccaletti et al., Icarus 145, 628–636, 2000) have shown that hypertelescope coronagraphy has unequalled sensitivity for detecting, at mid infra-red wavelengths, faint exoplanets within the exo-zodiacal glare. Later upgrades will enable the more difficult imaging and spectroscopy of these faint objects at visible wavelengths, using refined techniques of adaptive coronagraphy (Labeyrie and Le Coroller 2004). Together, the infra-red and visible spectral data carry rich information on the possible presence of life. The close environment of the central black-hole in the Milky Way will be imageable with unprecedented detail in the near infra-red. Cosmological imaging of remote galaxies at the limit of the known universe is also expected, from the ultra-violet to the near infra-red, following the first upgrade, and with greatly increasing sensitivity through successive upgrades. These areas will indeed greatly benefit from the upgrades, in terms of dynamic range, limiting complexity of the objects to be imaged, size of the elementary “Direct Imaging Field”, and limiting magnitude, approaching that of an 8-m space telescope when 1,000 apertures of 25 cm are installed. Similar gains will occur for addressing fundamental problems in physics and cosmology, particularly when observing neutron stars and black holes, single or binary, including the giant black holes, with accretion disks and jets, in active galactic nuclei beyond the Milky Way. Gravitational lensing and micro-lensing patterns, including time-variable patterns and perhaps millisecond lensing flashes which may be beamed by diffraction from sub-stellar masses at sub-parsec distances (Labeyrie, Astron Astrophys 284, 689, 1994), will also be observable initially in the favourable cases, and upgrades will greatly improve the number of observable objects. The observability of gravitational waves emitted by binary lensing masses, in the form of modulated lensing patterns, is a debated issue (Ragazzoni et al., MNRAS 345, 100–110, 2003) but will also become addressable observationally. The technology readiness of Luciola approaches levels where low-orbit testing and stepwise implementation will become feasible in the 2015–2025 time frame. For the following decades beyond 2020, once accurate formation flying techniques will be mastered, much larger hypertelescopes such as the proposed 100 km Exo-Earth Imager and the 100,000 km Neutron Star Imager should also become feasible. Luciola is therefore also seen as a precursor toward such very powerful instruments.  相似文献   
44.
The DynaMICCS mission is designed to probe and understand the dynamics of crucial regions of the Sun that determine solar variability, including the previously unexplored inner core, the radiative/convective zone interface layers, the photosphere/chromosphere layers and the low corona. The mission delivers data and knowledge that no other known mission provides for understanding space weather and space climate and for advancing stellar physics (internal dynamics) and fundamental physics (neutrino properties, atomic physics, gravitational moments...). The science objectives are achieved using Doppler and magnetic measurements of the solar surface, helioseismic and coronographic measurements, solar irradiance at different wavelengths and in-situ measurements of plasma/energetic particles/magnetic fields. The DynaMICCS payload uses an original concept studied by Thalès Alenia Space in the framework of the CNES call for formation flying missions: an external occultation of the solar light is obtained by putting an occulter spacecraft 150 m (or more) in front of a second spacecraft. The occulter spacecraft, a LEO platform of the mini sat class, e.g. PROTEUS, type carries the helioseismic and irradiance instruments and the formation flying technologies. The latter spacecraft of the same type carries a visible and infrared coronagraph for a unique observation of the solar corona and instrumentation for the study of the solar wind and imagers. This mission must guarantee long (one 11-year solar cycle) and continuous observations (duty cycle > 94%) of signals that can be very weak (the gravity mode detection supposes the measurement of velocity smaller than 1 mm/s). This assumes no interruption in observation and very stable thermal conditions. The preferred orbit therefore is the L1 orbit, which fits these requirements very well and is also an attractive environment for the spacecraft due to its low radiation and low perturbation (solar pressure) environment. This mission is secured by instrumental R and D activities during the present and coming years. Some prototypes of different instruments are already built (GOLFNG, SDM) and the performances will be checked before launch on the ground or in space through planned missions of CNES and PROBA ESA missions (PICARD, LYRA, maybe ASPIICS).  相似文献   
45.
Although Mars is a favored target for planetary exploration, there is still a need for complementary ground-based observing programs of the Martian atmosphere, and this need will remain in the future. Indeed, as the atmosphere is very tenuous (less than 0.01 bar at the surface), the lines are very narrow and a high spectral resolving power (above 104) is required over large spectral intervals. In addition, ground-based observations of Mars allow the instantaneous mapping of the whole planet, and thus the study of diurnal effects, which cannot be achieved from an orbiter. Recent ground-based achievements about the Martian atmospheric science include the first detection of H2O2 in the submillimeter range, the measurement of winds from CO millimetric transitions, the first detection of CH4 and the O3, H2O2, H2O, and CH4 mapping in the infrared. With an ELT, it will be possible to study at high spatial resolution transient atmospheric phenomena and to search for traces of minor constituents with unprecedented sensitivity. With ALMA, it will be also possible to search for minor species and to map the mesospheric winds for better constraining the climate models.  相似文献   
46.
47.
Summary. The exploration of Jupiter, the closest and biggest giant planet, has provided key information about the origin and evolution of the outer Solar system. Our knowledge has strongly benefited from the Voyager and Galileo space missions. We now have a good understanding of Jupiter's thermal structure, chemical composition and magnetospheric environment. There is still debate about the nature of the heating source responsible for the high thermospheric temperatures (precipitating particles and/or gravity waves). The measurement of elemental abundance ratios (C/H, N/H, S/H) gives strong support to the “nucleation” formation model, according to which giant planets formed from the accretion of an initial core and the collapse of the surrounding gaseous protosolar nebula. The D/H and He/He ratios are found to be representative of their protosolar value. The helium abundance, in contrast, appears to be slightly depleted in the outer envelope with respect to the protosolar value; this departure is interpreted as an evolutionary effect, due to the condensation of helium droplets in the liquid hydrogen ocean inside Jupiter's interior. The cloud structure of Jupiter, characterized by the belt-zone system, is globally understood; also present are specific features like regions of strong infrared radiation (“hot spots”), colder regions (“white ovals”) and the Great Red Spot (GRS). Clouds were surprisingly absent at the hot spot corresponding to the Galileo probe entry site, and the water abundance measured there was strongly depleted with respect to the solar O/H value. This probably implies that hot spots are dry, cloud-free regions of subsidence, while “normal” air, rich in condensibles, is transported upward by convective motions. As a result, the Jovian meteorology, still based on Halley-type cells, seems to be much more complex than a simple zone-belt system. The nature of the GRS, a giant anticyclonic storm, colder and higher than its environment, has been confirmed by the Galileo observations, but its internal structure appears to be very complex. Strong winds, probably driven by the Jovian internal source, were measured at deep tropospheric levels. The troposphere might be statically stable at pressures higher than 18 bars, but the extent of this putative radiative layer is still unknown. Received 23 November 1998  相似文献   
48.
Planar deformation features (PDFs) in quartz are the most widely used indicator of shock metamorphism in terrestrial rocks. They can also be used for estimating average shock pressures that quartz-bearing rocks have been subjected to. Here we report on a number of observations and problems that we have encountered when performing universal stage measurements and crystallographically indexing of PDF orientations in quartz. These include a comparison between manual and automated methods of indexing PDFs, an evaluation of the new stereographic projection template, and observations regarding the PDF statistics related to the c-axis position and rhombohedral plane symmetry. We further discuss the implications that our findings have for shock barometry studies. Our study shows that the currently used stereographic projection template for indexing PDFs in quartz might induce an overestimation of rhombohedral planes with low Miller–Bravais indices. We suggest, based on a comparison of different shock barometry methods, that a unified method of assigning shock pressures to samples based on PDFs in quartz is necessary to allow comparison of data sets. This method needs to take into account not only the average number of PDF sets/grain but also the number of high Miller–Bravais index planes, both of which are important factors according to our study. Finally, we present a suggestion for such a method (which is valid for nonporous quartz-bearing rock types), which consists of assigning quartz grains into types (A–E) based on the PDF orientation pattern, and then calculation of a mean shock pressure for each sample.  相似文献   
49.
During the last two decades, the first generation of beam combiners at the Very Large Telescope Interferometer has proved the importance of optical interferometry for high-angular resolution astrophysical studies in the near- and mid-infrared. With the advent of 4-beam combiners at the VLTI, the u ? v coverage per pointing increases significantly, providing an opportunity to use reconstructed images as powerful scientific tools. Therefore, interferometric imaging is already a key feature of the new generation of VLTI instruments, as well as for other interferometric facilities like CHARA and JWST. It is thus imperative to account for the current image reconstruction capabilities and their expected evolutions in the coming years. Here, we present a general overview of the current situation of optical interferometric image reconstruction with a focus on new wavelength-dependent information, highlighting its main advantages and limitations. As an Appendix we include several cookbooks describing the usage and installation of several state-of-the art image reconstruction packages. To illustrate the current capabilities of the software available to the community, we recovered chromatic images, from simulated MATISSE data, using the MCMC software SQUEEZE. With these images, we aim at showing the importance of selecting good regularization functions and their impact on the reconstruction.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号