首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
大气科学   11篇
地球物理   11篇
地质学   16篇
天文学   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   9篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
11.
Ribera  P.  Gimeno  L.  Gallego  D.  García-Herrera  R.  Hernández  E.  de la Torre  L.  Nieto  R.  Calvo  N. 《Studia Geophysica et Geodaetica》2004,48(2):447-458
Two different groups of indices have been defined to analyze the evolution of global temperature between 1958 and 1998. All the indices were evaluated at three different levels (850, 500 and 200 hPa), and averaged indices were calculated using the whole globe, continental areas and oceanic areas. The first group of indices analyzes the area of the world covered with higher and lower than normal temperatures, detecting a slight cooling in the 200 hPa level. The second group of indices studies the annual frequency of extreme events, and again, it is at 200 hPa where the most intense variation is detected. Finally, an analysis is performed to determine the regions most sensible to variations in the occurrence of extreme events. Tropical areas are mostly responsible of the variations detected in the second group of indices.  相似文献   
12.
This work diagnoses the present salinity of the Riguel and Arba Rivers (Spain) and predicts its expected evolution using geochemical models applied to the modernization of the actual Bardenas I and the completion of irrigation in the Bardenas II irrigation districts. The results show a progressive increase in salinity (from 0.39 to 2.21 dS/m electrical conductivity) in the Riguel-Arba system, due to the cumulative collection of irrigation return flows and its progression towards more saline facies. The Bardenas I modernization, involving an increase in irrigation efficiency from 50 to 90%, will decrease the volume and salinity of the Riguel River by 30%. In contrast, irrigation of the new 24,000 ha Bardenas II land will increase the flow (12%) and salinity (21%) of the Arba River. Geochemical models may help in providing sensible estimates on the impact of irrigation on the salinity of the receiving water bodies.  相似文献   
13.
An experimental study based on the effects of fire on soil hydrology was developed at the Experimental Station of ‘La Concordia’ (Valencia, Spain). It is located on a calcareous hillside facing SSE and composed of nine erosion plots (4 × 20 m). In summer 2003, after eight years of soil and vegetation recovery from previous fires in 1995 (with three fire treatments: T1 high‐intensity fire, T2 moderate intensity, and T3 not burnt), experimental fires of low intensity were again conducted on the plots already burnt, to study the effects of repeated fires on the soil water infiltration, soil water content and runoff. Infiltration rates and capacities were measured by the mini‐disk infiltrometer method (MDI), assessing the effects of vegetation cover by comparing the under‐canopy microenvironment (UC) and its absence on bare soil (BS), immediately before and after the fire experiments. Soil properties like water retention capacity (SWRC) and water content (SWC) were also determined for the different fire treatments (T1, T2 and T3) and microsites (UC and BS). Hydrological parameters, such as runoff and infiltration rate, were monitored at plot scale from July 2002 to July 2004. In the post‐fire period, data displayed a 20% runoff increase and a decrease in infiltration (18%). Differences in the steady‐state infiltration rate (SSI) and infiltration capacity (IC) were tested with the MDI on the different treatments (T1, T2 and T3), and between the UC and BS microsites of each treatment. After fire, the SSI of the UC soil declined from 16 mm h−1 to 12 mm h−1 on T1, and from 24 mm h−1 to 19 mm h−1 on T2. The IC was reduced by 2/3 in the T1 UC soil, and by half on T2 UC soil. On the BS of T1 and T2, the fire effect was minimal, and higher infiltration rates and capacities were reached. Therefore, the presence/absence of vegetation when burnt influenced the post‐burnt infiltration patterns at soil microscale. On the T3, different rates and capacities were obtained depending on the microsites (UC and BS), with higher SSI (25 mm h−1) and IC (226 mm h−1) on BS than on UC (SSI of 18 mm h−1 and IC of 136 mm h−1). The SWRC and SWC were recovered from 1995 to 2003 (prior to the fires). The 2003 fire promoted high variability on the SWC at pF 0·1, 2 and 2·5, and the SWRC on burnt soils were reduced. To summarize, the IC and SSI post‐fire decreases were related to the lower infiltration rate at plot scale, the significant differences in the SWRC between burnt and control treatments, and the increase in the runoff yield (20%). According to the results, the MDI was a useful tool to characterize the soil infiltration on the vegetation patches of the Mediterranean maquia, and contrary to other studies, on the UC soil, the infiltration rate and IC, when soil was dry, were lower than that obtained on BS. Once the soil gets wet, similar values were found on both microenvironments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
14.
Previous published data, combined with our results of 13 new radiocarbon ages and extensive geological fieldwork, indicate that during the past 11 ka 24 monogenetic basaltic eruptions occurred in the north sector of Gran Canaria. These eruptions can be grouped into three periods of eruptive activity: 1900–3200 14C a BP; 5700–6000 14C a BP; and an older period represented by only one eruption, El Draguillo, dated at 10 610 ± 190 14C a BP. Archaeological studies have shown that the more recent eruptions affected prehistoric human settlements on the island. Field studies demonstrate that the eruptions typically built strombolian cones (30–250 m in height) and associated relatively long lava flows (100–10 350 m in length); a few eruptions also produced tephra fall deposits. The total erupted volume of these eruptions is about 0.388 km3 (46.1% as tephra fall, 41.8% as cinder cone deposits and 12.1% as lava flows). The relatively low eruption rate (~0.04 km3 ka?1) during the past 11 ka is consistent with Gran Canaria's stage of evolution in the regional volcano‐tectonic setting of the Canary Archipelago. The results of our study were used to construct a volcanic hazards map that clearly delimits two sectors in the NE sector of Gran Canaria, where potential future eruptions would pose a substantial risk for densely populated areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
15.
16.
17.
Groundwater arsenic distribution in South-western Uruguay   总被引:1,自引:0,他引:1  
This is the first specific information regarding arsenic distribution of groundwater in SW Uruguay. Twenty-eight wells were sampled on the aquifers of Mercedes, Raigón and Chuy in five localities. The pH, specific conductivity and temperature were determined in the field. The hydrochemical characterization (major and trace elements) was carried out by both inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry. The occurring arsenic concentrations exceed the recommended threshold for drinking water of the World Health Organization (10 μg/l of As) in 22 samples, with more than 50 μg/l of As in two cases. The median, minimum and maximum concentrations were 0.1, 16.9 and 58.0 μg/l of As, respectively. The studied aquifers present a horizontal and a vertical variation of the concentrations as a whole as well as individually. The highest values were observed in the Mercedes Aquifer in the areas near the Uruguay River.  相似文献   
18.
19.
Summary The authors perform an exploratory analysis on the effect of the timing of the stratospheric vortex breakup in the occurrence of cut-off low systems (COLs) in the Northern Hemisphere. The first multidecadal Northern Hemisphere COLs database (Nieto et al, 2005) covering a 41 year-long period (1958–1998) was used in the analysis. The dates of stratospheric vortex breakup were obtained using two different approaches recently purposed in literature based in potential vorticity and zonal winds. An analysis of differences of COLs occurrences for the five earlier (later) breakup years showed that, at latitudes lower than 45° N, COLs are more frequent for earlier vortex years during the following spring and summer. The monthly analysis showed that, in general, the significant differences start in May lasting until September, being especially relevant for the European sector, the area with the highest rates of COLs occurrence in the Northern Hemisphere.  相似文献   
20.
The Sargaz Cu–Zn massive sulfide deposit is situated in the southeastern part of Kerman Province, in the southern Sanandaj–Sirjan Zone of Iran. The stratigraphic footwall of the Sargaz deposit is Upper Triassic to Lower Jurassic (?) pillowed basalt, whereas the stratigraphic hanging wall is andesite. Mafic volcanic rocks are overlain by andesitic volcaniclastics and volcanic breccias and locally by heterogeneous debris flows. Rhyodacitic flows and volcaniclastics overlie the sequence of basaltic and andesitic rocks. Based on the bimodal nature of volcanism, the regional geologic setting and petrochemistry of the volcanic rocks, we suggest massive sulfide mineralization in the Sargaz formed in a nascent ensialic back-arc basin. The current reserves (after ancient mining) of the Sargaz deposit are 3 Mt at 1.34% Cu, 0.38% Zn, 0.08%Pb, 0.24 g/t Au, and 7 g/t Ag. The structurally dismembered massive sulfide lens is zoned from a pyrite-rich base, to a pyrite?±?chalcopyrite-rich central part, and a sphalerite–chalcopyrite-rich upper part, with a sphalerite-rich zone lateral to the upper part. The main sulfide mineral is pyrite, with lesser chalcopyrite and sphalerite. The feeder zone, comprised of a vein stockwork consists of quartz–sulfide–sericite pesudobreccia and, in the deepest part, chlorite–quartz–pyrite pesudobreccia. Footwall hydrothermal alteration extends at least 70–80 m below the massive sulfide lens and more than a hundred meters along strike from the massive sulfide lens. Jasper and Fe–Mn bearing chert horizons lateral to the sulfide deposit represent low-temperature hydrothermal precipitates of the evolving hydrothermal system. Based on mineral textures and paragenetic relationships, the growth history of the Sargaz deposit is complex and includes: (1) early precipitation of sulfides (protore) on the seafloor as precipitation of fine-grained anhedral pyrite, sphalerite, quartz, and barite; (2) anhydrite precipitation in open spaces and mineral interstices within the sulfide mound followed by its subsequent dissolution, formation of breccia textures, and mound clasts and precipitation of coarse-grained pyrite, sphalerite, tetrahedrite–tennantite, galena and barite; (3) replacement of pre-existing sulfides by chalcopyrite precipitated at higher temperatures (zone refining); (4) continued “refining” led to the dissolution of stage 3 chalcopyrite and formation of a base-metal-depleted pyrite body in the lowermost part of the massive sulfide lens; (5) carbonate veins were emplaced into the sulfide lens, replacing stage 2 barite. The δ34S composition of the sulfides ranges from +2.8‰ to +8.5‰ (average, +5.6‰) with a general increase of δ34S ratios with depth within the massive sulfide lens and underlying stockwork zone. The heavier values indicate that some of the sulfur was derived from seawater sulfate that was ultimately thermochemically reduced in deep hydrothermal reaction zones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号