首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   8篇
  国内免费   2篇
测绘学   9篇
大气科学   24篇
地球物理   68篇
地质学   142篇
海洋学   27篇
天文学   26篇
综合类   1篇
自然地理   18篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   9篇
  2019年   8篇
  2018年   6篇
  2017年   10篇
  2016年   10篇
  2015年   7篇
  2014年   12篇
  2013年   20篇
  2012年   8篇
  2011年   26篇
  2010年   14篇
  2009年   18篇
  2008年   17篇
  2007年   16篇
  2006年   16篇
  2005年   17篇
  2004年   20篇
  2003年   12篇
  2002年   15篇
  2001年   6篇
  2000年   5篇
  1999年   1篇
  1998年   9篇
  1997年   4篇
  1996年   2篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有315条查询结果,搜索用时 15 毫秒
61.
62.
The modulation of radiative processes by changes in water vapor and cloudiness is at the origin of important feedbacks which control climate variability as well as climate changes. These feedbacks are especially active in the intertropical area, where it is possible to diagnose a combination of partially compensating positive and negative feedbacks. The characteristics and the strength of those feedbacks is closely associated with the dynamical regimes in which they develop. Reverse changes in dynamical patterns may cause a modulation of the radiative processes. A first approach to these problems is to distinguish between two ascending and subsiding circulation patterns. This bimodality of the circulation is well established in the tropical area, and favors the use of simplified models as an appropriate tool to carry out a first-order quantification of these processes. In particular, this combination of radiative and dynamical feedbacks characterizes the development of the monsoons and their variability. Simple conceptual models can thus serve to characterize some of the factors which will affect the intraseasonal variations of the monsoon.  相似文献   
63.
Geochemical studies of long-lived volcanic complexes are crucial for the understanding of the nature and composition of the subduction component of arc magmatism. The Pichincha Volcanic Complex (Northern Andean Volcanic Zone) consists of: (1) an old, highly eroded edifice, the Rucu Pichincha, whose lavas are mostly andesites, erupted from 1,100 to 150 ka; and (2) a younger, essentially dacitic, Guagua Pichincha composite edifice, with three main construction phases (Basal Guagua Pichincha, Toaza, and Cristal) which developed over the last 60 ka. This structural evolution was accompanied by a progressive increase of most incompatible trace element abundances and ratios, as well as by a sharp decrease of fluid-mobile to fluid-immobile element ratios. Geochemical data indicate that fractional crystallization of an amphibole-rich cumulate may account for the evolution from the Guagua Pichincha andesites to dacites. However, in order to explain the transition between the Rucu Pichincha andesites and Guagua Pichincha dacites, the mineralogical and geochemical data indicate the predominance of magma mixing processes between a mafic, trace-element depleted, mantle-derived end-member, and a siliceous, trace-element enriched, adakitic end-member. The systematic variation of trace element abundances and ratios in primitive samples leads us to propose that the Rucu Pichincha magmas came from a hydrous-fluid metasomatized mantle wedge, whereas Guagua Pichincha magmas are related to partial melting of a siliceous-melt metasomatized mantle. This temporal evolution implies a change from dehydration to partial melting of the slab, which may be associated with an increase in the geothermal gradient along the slab due to the presence of the subducted Carnegie Ridge at the subduction system. This work emphasizes the importance of studying arc-magma systems over long periods of time (of at least 1 million of years), in order to evaluate the potential variations of the slab contribution into the mantle source of the arc magmatism.  相似文献   
64.
Abstract

The Guerrero suspect terrane composed of Late Jurassic-Early Cretaceous sequences, extends from Baja California up to Acapulco and is considered to be coeval with the Late Mesozoic igneous and sedimentary arc sequences of the Greater Antilles, Venezuela and Western Cordillera of Colombia. New geological, petrological and geochemical data from central and southern Mexico, led us to propose a new model for the building of the Alisitos-Teloloapan arc. This arc, partly built on the Pacific oceanic lithosphere and partly on continental fragments, could be related to the subduction of an oceanic basin - the Arperos basin - under the Paleo-Pacific plate. This subduction was dipping southwest.

At the beginning of the magmatic activity of the oceanic segment of this arc, depleted tholeiitic basalts were emitted in a submarine environnement below the CCD. While subduction was going on, the arc magmas evolved from LREE depleted tholeiites to slightly LREE enriched tholeiites and then, to calc-alkaline basalts and andesites enriched in LREE and HFSE. Concurrently, the arc sedimentary environment changed from deep oceanic to neritic with the deposition of Aptian-Albian reefal limestones, at the end of the arc building. In the continent-based segment, the arc magmas are exclusively differentiated calc-alkaline suites depleted in HREE and Y, formed of predominantly siliceous lavas and pyroclastic rocks, emitted in a sub-aerial or shallow marine environment.

Thus, taking into account this above mentioned model, the Cretaceous volcanic series, accreted to the margins of cratonal America, in Colombia, Venezuela, Greater Antilles and Mexico, could be related to the same west-south-west dipping subduction of oceanic basins, fringing the North and South American continental cratons and connected directly with the inter-American Tethys. While the subduction was proceeding, this magmatic arc drifted towards the North and South American cratons and finally, collided with the continental margins at different periods during the Cretaceous.  相似文献   
65.
In this paper, we compare the elemental and isotopic (C, N, Pb) geochemistry of lake sediments from two contrasted environments in south‐central Chile. The first lake, Laguna Chica de San Pedro (LCSP), is situated in the urbanised area of the Biobio Region (36°S). The second lake, Lago Puyehue (40° S), is located 400 km to the southeast of LCSP and within an Andean national park. Our aim is to identify environmental impacts associated with increasing industrial activities and land degradation during the last 150 a. In LCSP, shifts in C/N atomic ratios, δ13C and δ15N from 1915–1937 to the late 1980s are attributed to successive land degradation episodes in the lake watershed. Based on a Pb isotopic mixing model, we estimate that up to 20% of lead in LCSP sediments is supplied from urban atmospheric pollution. By contrast, human impact in the watershed of Lago Puyehue is very limited. We observe no change in organic geochemistry during the last 150 a and lead contamination remains lower than 5%, even during the last decades. Although contamination levels are much higher in LCSP than in Lago Puyehue, a peak in anthropogenic Pb is recorded during the same period (1974–1976) at both sites. This maximum contamination level is consistent with increased industrial activity in the vicinity of Concepción. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
66.
Distance correlations of Late Tortonian–Messinian littoral carbonate complexes are proposed from the study of eight platforms in the western and central Mediterranean. Correlations are based on the identification of two major biological sedimentary cycles and of two index surfaces. Surface A is a maximum flooding surface during cycle 1 at around 6.7 Ma. Surface B is a regional marine planation surface at around 5.95 Ma, at the base of cycle 2 (Terminal Carbonate Complex). A general sedimentary model is proposed for the 7–5.6-Ma time-span. The boundary between cycles 1 and 2 is coincident with the onset of the Messinian Salinity Crisis, and appears to be related to major environmental–paleo-oceanographic changes in the Mediterranean, rather than to a major sea-level drop or to climatic change.  相似文献   
67.
A fully instrumented physical model was designed and built to reproduce development by surging and monitor its effects during surging and after development. The model simulates a horizontal layer in a confined aquifer with control of vertical overburden pressure. An automatic apparatus produced development by surging in successive phases up to 24 hours. Aquifer tests in steady-state conditions were performed between successive phases. The paper reports the main results of three experiments performed with Johnson screens 200 mm in diameter; they had slot sizes between the D54 and D70 of the aquifer soil. This soil was placed under controlled conditions, and initial homogeneity was obtained as confirmed by initial control tests. Pore pressures (and thus hydraulic heads) were continuously monitored during development phases and aquifer tests by 22 electronic piezometers at distances between 0 and 1 m from the screen. These piezometers measured water pressures every 0.1 s when required. Solid particles passing through the screen were recovered to study the solid yield and the gradation of particles. Positive and negative values of local gradients reached values up to 400 close to the screen at the beginning of development and decreased with time of development. These high values produced high seepage forces displacing particles in the aquifer. The well yield was increased by a factor of 6 after development. These model test results confirmed empirical criteria on entrance velocity, internal stability criteria, and field values of "sand" production by development. In addition, they enabled a quantification of skin effects to be considered in interpreting an aquifer test.  相似文献   
68.
69.
The middle Paleolithic stratigraphic sequence of Les Pradelles (Charente, France) spans from the end of Marine Isotope Stage (MIS) 4 until the middle of MIS 3. Micromammal remains are present in all the stratigraphic levels, offering a rare opportunity to address the questions of both environmental and climatic fluctuations throughout this period. Climate modes were studied through the taphonomy, biodiversity and oxygen isotope compositions of phosphate (δ18Op) from 66 samples of rodent tooth enamel. The δ18Op values from the lower sedimentary levels provide summer mean air temperatures of 19 ± 2°C (level 2/1) and of 16 ± 2°C (levels 2A, 2B and 4A). Within the middle of sequence (level 4B), a paleobiodiversity change can be identified with an increase of Dicrostonyx torquatus, which is associated with the largest amplitude in δ18Op values and the highest maximal δ18Op values. At the top of the sequence (level 5-2), a biodiversity change is observed with the increase of Microtus arvalis, but without any change in δ18Op values. The association of cold rodent species with unexpected high and large amplitudes in the δ18Op values of their teeth, possibly indicative of aridity, suggests their deposition during a Heinrich event.  相似文献   
70.
In the Western Alps, some recent scarps were previously interpreted as surface ruptures of tectonic reverse and normal faults that agree with microseismicity and GPS measurements. Our analysis shows that in fact there are hundreds of recent scarps, up to 30 m high and 2.1 km long, with only pure normal motions. They share the same characteristics as typical sackung scarps. The scarps are mainly uphill facing, parallel to the ridge crests and the contour lines. They are relatively short (less than 2.1 km) with respect to tectonic fault ruptures, and organized in swarms. They cut screes and relict rock glaciers with a slow (commonly 1 mm/year) average slip rate. In the Aiguilles Grives massif these sackung scarps clearly express the gravitational toppling of sub-vertical bedding planes in hard rocks. In contrast, the Belledonne Outer Crystalline Massif exhibits scarps that stem from the gravitational reactivation of conjugate tectonic faults. The recent faults extend to about 1600 m beneath the Rognier ridge crest, but are always above the valley floor. The main scarp swarm is 9.2 km long and constitutes the largest sackung ever described in the Western Alps. 10Be dating of a scarp and offset surfaces shows that > 4 m slip may have occurred rapidly (in less than 3800 years) sometimes between the end of the glaciation and 8800 ± 1900 years ago. This dating, together with the location of some faults far from the deep glacial valleys, suggests that sagging might have been triggered by strong earthquakes during a post-glacial period of probably enhanced seismicity. The Belledonne and Synclinal Median faults (just beneath the Rognier sackung) could have been the sources of this seismicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号