全文获取类型
收费全文 | 148篇 |
免费 | 4篇 |
专业分类
测绘学 | 5篇 |
大气科学 | 17篇 |
地球物理 | 47篇 |
地质学 | 52篇 |
海洋学 | 15篇 |
天文学 | 10篇 |
自然地理 | 6篇 |
出版年
2021年 | 1篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 6篇 |
2015年 | 2篇 |
2014年 | 4篇 |
2013年 | 5篇 |
2012年 | 4篇 |
2011年 | 8篇 |
2010年 | 2篇 |
2009年 | 9篇 |
2008年 | 6篇 |
2007年 | 4篇 |
2006年 | 5篇 |
2005年 | 8篇 |
2004年 | 5篇 |
2003年 | 4篇 |
2002年 | 4篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1996年 | 4篇 |
1994年 | 4篇 |
1993年 | 3篇 |
1991年 | 4篇 |
1990年 | 3篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 3篇 |
1986年 | 4篇 |
1985年 | 2篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1976年 | 1篇 |
1974年 | 2篇 |
1973年 | 2篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1969年 | 3篇 |
1968年 | 1篇 |
1967年 | 1篇 |
排序方式: 共有152条查询结果,搜索用时 0 毫秒
21.
22.
23.
As a result of the anthropogenic greenhouse effect there is fear of alterations of the world climate, which also may result in hydrological changes and consequently in water resources management. In a case study it was investigated if such changes could be identified for a regional catchment area. Summarized it may be said that the regional analysis of hydro-meteorological data in the catchment area of the Sieg showed the expected effects of the anthropogenic climate change on the regional water cycle. Rises in annual mean temperature and precipitation could be observed over a period from 1892 until 1993. However, a significant relation between evident changes and greenhouse effect could not be stated. Changes in discharge do not show consistent behavior. Especially apparent contradictions show that additional examinations are necessary in order to make the complex natural inter-relationships between climate and regional water cycle with the impacts of existing anthropogenetic interferences visible and applicable for practical engineering tasks. 相似文献
24.
Joel Sanchez-Bermudez Florentin Millour Fabien Baron Roy van Boekel Laurent Bourgès Gilles Duvert Paulo J. V. Garcia Nuno Gomes Karl-Heinz Hofmann Thomas Henning Jacob W. Isbell Bruno Lopez Alexis Matter J-Uwe Pott Dieter Schertl Eric Thiébaut Gerd Weigelt John Young 《Experimental Astronomy》2018,46(3):457-473
During the last two decades, the first generation of beam combiners at the Very Large Telescope Interferometer has proved the importance of optical interferometry for high-angular resolution astrophysical studies in the near- and mid-infrared. With the advent of 4-beam combiners at the VLTI, the u ? v coverage per pointing increases significantly, providing an opportunity to use reconstructed images as powerful scientific tools. Therefore, interferometric imaging is already a key feature of the new generation of VLTI instruments, as well as for other interferometric facilities like CHARA and JWST. It is thus imperative to account for the current image reconstruction capabilities and their expected evolutions in the coming years. Here, we present a general overview of the current situation of optical interferometric image reconstruction with a focus on new wavelength-dependent information, highlighting its main advantages and limitations. As an Appendix we include several cookbooks describing the usage and installation of several state-of-the art image reconstruction packages. To illustrate the current capabilities of the software available to the community, we recovered chromatic images, from simulated MATISSE data, using the MCMC software SQUEEZE. With these images, we aim at showing the importance of selecting good regularization functions and their impact on the reconstruction. 相似文献
25.
Gerd Wenzens 《Quaternary Research》1999,51(3):238
In the southern Argentine Andes, ten advances of valley glaciers were used to reconstruct the late-glacial and Holocene glacier history. The accumulation areas of these glaciers lie in the Precordillera and are thus independent of fluctuations of the South Patagonian Icefield. Like the Viedma outlet glacier, the valley glaciers advanced three times during late-glacial time (14,000–10,000 yr B.P.). The youngest advance correlates with the Younger Dryas Stade, based on two minimum AMS14C dates of 9588 and 9482 yr B.P. The second oldest advance occurred before 11,800 yr B.P. During the first half of the Holocene, (ca. 10,000–5000 yr B.P.), advances culminated about 8500, 8000–7500, and 5800–5500 yr B.P. During the second half of the Holocene, advances occurred between ca. 4500 and 4200 yr B.P., as well as between 3600 and 3300 yr B.P. In the Río Cóndor valley three subsequent advances have been identified. 相似文献
26.
27.
28.
Acta Geotechnica - The dynamics of grain fabrics is captured by means of a hidden state variable , named eutaraxy, which quantifies the propensity for a heat-like micro-seismicity due to disturbing... 相似文献
29.
Direct measurements of volume transports through Fram Strait 总被引:9,自引:1,他引:9
Eberhard Fahrbach Jens Meincke Svein Østerhus Gerd Rohardt Ursula Schauer Vigdis Tverberg Jennifer Verduin 《Polar research》2001,20(2):217-224
Heat and freshwater transports through Fram Strait are understood to have a significant influence on the hydrographic conditions in the Arctic Ocean and on water mass modifications in the Nordic seas. To determine these transports and their variability reliable estimates of the volume transport through the strait are required. Current meter moorings were deployed in Fram Strait from September 1997 to September 1999 in the framework of the EU MAST III Variability of Exchanges in the Northern Seas programme. The monthly mean velocity fields reveal marked velocity variations over seasonal and annual time scales, and the spatial structure of the northward flowing West Spitsbergen Current and the southward East Greenland Current with a maximum in spring and a minimum in summer. The volume transport obtained by averaging the monthly means over two years amounts to 9.5 ± 1.4 Sv to the north and 11.1 ± 1.7 Sv to the south (1 Sv = 106 m3 s−1 ). The West Spitsbergen Current has a strong barotropic and a weaker baroclinic component; in the East Greenland Current barotropic and baroclinic components are of similar magnitude. The net transport through the strait is 4.2 ± 2.3 Sv to the south. The obtained northward and southward transports are significantly larger than earlier estimates in the literature; however, within its range of uncertainty the balance obtained from a two year average is consistent with earlier estimates. 相似文献
30.
Two large ice fields between 46°30′ and 51°30′S cover the Patagonian Andes. The North and South Patagonian Ice Fields are separated by the transandine depth line at 47°45′ to 48°15′S. Canal and Río Baker run through this depression. The two ice fields are generally considered relics of a continuous ice cap, which covered the entire Patagonian Andes from 39° to 52°S and extended far into the eastern foreland of the Andes. This assumption is not correct for the 200-km-long section of the Andes between Lago Pueyrredón (Lago Cochrane in Chile) (47°15′S) and Lago San Martín (Lago O'Higgins in Chile) (48°45′S). The lack of a continuous ice cap extending far into the east is caused by the transandine depth line, playing a crucial role in the fluvial erosion and the glacial scouring of this tectonic zone. This depression formed a river system (e.g. Río Baker, Río Bravo and Río Mayer) that drains towards the west. Reconstruction of the maximum glacial advance of the last ice age shows that the eastern outlet glaciers of the two ice fields between Lago San Martín and Lago Pueyrredón did not drain towards the east, but rather followed the general gradient of the transandine depth line. In this area the eastern flank of the Andes between Monte San Lorenzo (3770 m) and Sa. de Sangra (2155 m) supported valley glaciers, which were independent of the expanding ice fields. Only a few valley glaciers advanced towards the Patagonian Meseta. The terminal moraines of these glaciers were erroneously interpreted as the eastern edge of a continuous ice cap. North of 47°30′S the outlet glaciers of the NPI advanced 200 km during the LGM and the late glacial advances nearly reached to 71°W. In contrast, south of 49°S glacier expansion was comparatively less: The LGM is situated only 85–115 km east of the present margins of the large outlet glaciers (O'Higgins, Viedma, and Upsala), and no late glacial advance reached 72°W. These considerable differences of glacier expansion were influenced by the northward migration of the westerly precipitation belt during glacial cycles. There is tentative evidence that the glaciers advanced three times in the period from 14 000 to 9 500 14C years BP. 相似文献