首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   461篇
  免费   5篇
  国内免费   4篇
测绘学   5篇
大气科学   50篇
地球物理   107篇
地质学   168篇
海洋学   29篇
天文学   70篇
综合类   1篇
自然地理   40篇
  2021年   7篇
  2020年   3篇
  2019年   5篇
  2018年   7篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   12篇
  2013年   25篇
  2012年   13篇
  2011年   12篇
  2010年   15篇
  2009年   28篇
  2008年   17篇
  2007年   22篇
  2006年   15篇
  2005年   16篇
  2004年   10篇
  2003年   17篇
  2002年   13篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1995年   8篇
  1994年   9篇
  1993年   6篇
  1992年   3篇
  1991年   7篇
  1990年   9篇
  1989年   6篇
  1988年   9篇
  1987年   7篇
  1986年   8篇
  1985年   10篇
  1984年   6篇
  1983年   6篇
  1982年   8篇
  1981年   8篇
  1980年   8篇
  1979年   8篇
  1978年   7篇
  1977年   4篇
  1976年   8篇
  1975年   10篇
  1974年   4篇
  1973年   6篇
  1969年   4篇
排序方式: 共有470条查询结果,搜索用时 15 毫秒
101.
Spatial climate models were developed for México and its periphery (southern USA, Cuba, Belize and Guatemala) for monthly normals (1961–1990) of average, maximum and minimum temperature and precipitation using thin plate smoothing splines of ANUSPLIN software on ca. 3,800 observations. The fit of the model was generally good: the signal was considerably less than one-half of the number of observations, and reasonable standard errors for the surfaces would be less than 1°C for temperature and 10–15% for precipitation. Monthly normals were updated for three time periods according to three General Circulation Models and three emission scenarios. On average, mean annual temperature would increase 1.5°C by year 2030, 2.3°C by year 2060 and 3.7°C by year 2090; annual precipitation would decrease ?6.7% by year 2030, ?9.0% by year 2060 and ?18.2% by year 2090. By converting monthly means into a series of variables relevant to biology (e. g., degree-days > 5°C, aridity index), the models are directly suited for inferring plant–climate relationships and, therefore, in assessing impact of and developing programs for accommodating global warming. Programs are outlined for (a) assisting migration of four commercially important species of pine distributed in altitudinal sequence in Michoacán State (b) developing conservation programs in the floristically diverse Tehuacán Valley, and (c) perpetuating Pinus chiapensis, a threatened endemic. Climate surfaces, point or gridded climatic estimates and maps are available at http://forest.moscowfsl.wsu.edu/climate/.  相似文献   
102.
Natural Hazards - Over the past decade, the cost of disasters on lives and livelihoods has increased many folds. However, there are few tools available that can be used to measure the level of...  相似文献   
103.
Natural Hazards - Acknowledging the devastating consequences of past earthquakes, current research efforts focus on the development of tools for assessing and controlling the risk and losses...  相似文献   
104.
Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.  相似文献   
105.
Soil moisture is an important driver of growth in boreal Alaska, but estimating soil hydraulic parameters can be challenging in this data-sparse region. Parameter estimation is further complicated in regions with rapidly warming climate, where there is a need to minimize model error dependence on interannual climate variations. To better identify soil hydraulic parameters and quantify energy and water balance and soil moisture dynamics, we applied the physically based, one-dimensional ecohydrological Simultaneous Heat and Water (SHAW) model, loosely coupled with the Geophysical Institute of Permafrost Laboratory (GIPL) model, to an upland deciduous forest stand in interior Alaska over a 13-year period. Using a Generalized Likelihood Uncertainty Estimation parameterisation, SHAW reproduced interannual and vertical spatial variability of soil moisture during a five-year validation period quite well, with root mean squared error (RMSE) of volumetric water content at 0.5 m as low as 0.020 cm3/cm3. Many parameter sets reproduced reasonable soil moisture dynamics, suggesting considerable equifinality. Model performance generally declined in the eight-year validation period, indicating some overfitting and demonstrating the importance of interannual variability in model evaluation. We compared the performance of parameter sets selected based on traditional performance measures such as the RMSE that minimize error in soil moisture simulation, with one that is designed to minimize the dependence of model error on interannual climate variability using a new diagnostic approach we call CSMP, which stands for Climate Sensitivity of Model Performance. Use of the CSMP approach moderately decreases traditional model performance but may be more suitable for climate change applications, for which it is important that model error is independent from climate variability. These findings illustrate (1) that the SHAW model, coupled with GIPL, can adequately simulate soil moisture dynamics in this boreal deciduous region, (2) the importance of interannual variability in model parameterisation, and (3) a novel objective function for parameter selection to improve applicability in non-stationary climates.  相似文献   
106.
Three samples of gem quality plagioclase crystals of An60 were experimentally deformed at 900 °C, 1 GPa confining pressure and strain rates of 7.5–8.7×10−7 s−1. The starting material is effectively dislocation-free so that all observed defects were introduced during the experiments. Two samples were shortened normal to one of the principal slip planes (010), corresponding to a “hard” orientation, and one sample was deformed with a Schmid factor of 0.45 for the principal slip system [001](010), corresponding to a “soft” orientation. Several slip systems were activated in the “soft” sample: dislocations of the [001](010) and 110(001) system are about equally abundant, whereas 110{111} and [101] in ( 31) to ( 42) are less common. In the “soft” sample plastic deformation is pervasive and deformation bands are abundant. In the “hard” samples the plastic deformation is concentrated in rims along the sample boundaries. Deformation bands and shear fractures are common. Twinning occurs in close association with fracturing, and the processes are clearly interrelated. Glissile dislocations of all observed slip systems are associated with fractures and deformation bands indicating that deformation bands and fractures are important sites of dislocation generation. Grain boundaries of tiny, defect-free grains in healed fracture zones have migrated subsequent to fracturing. These grains represent former fragments of the fracture process and may act as nuclei for new grains during dynamic recrystallization. Nucleation via small fragments can explain a non-host-controlled orientation of recrystallized grains in plagioclase and possibly in other silicate materials which have been plastically deformed near the semi-brittle to plastic transition.  相似文献   
107.
The morphologies of calcite grain boundaries were analyzed to provide insight into the evolution of pore networks in unfractured rock. Two synthetic calcite rocks were fabricated by hot isostatically pressing (HIP-ing) dried analytical-grade powders of pure CaCO3 and CaCO3 plus 5% Al2O3 at 600° C and 200 MPa confining pressure for 3 hours (HIP-1). Some samples were HIPed a second time at different temperatures and pressures to investigate the stability of the structures (HIP-2a-c). SEM and TEM were used to image both grain faces and grain boundary cross-sections. Structures on grain faces vary from open shallow basins with peripheral rims, to labyrinths of irregular ridges and channels, to isolated circular depressions. All of these structures are mirrored across the plane between grain faces. The grain size in both the single and two-phase samples increased markedly during HIP-1. Migrating boundaries either dragged pores along or broke away leaving grain interiors dotted with small voids. The structures present after HIP-1 were not stable but evolved considerably in a way dependent on the conditions of the HIP-2. Confining pressure had the most pronounced effect. With low confining pressure, the grain-boundary porosity evolved into isolated circular depressions but the total pore volume did not noticeably decrease. With high confining pressure, the pore volume virtually disappeared. The structures present after HIP-1 are strikingly similar to those that develop in intragranular cracks during healing. We infer that grain boundaries and intragranular cracks heal by similar processes. Decomposition, localized melting, impurities, and anisotropic surface energies played no evident role in forming the grain-boundary structures. The timing of the formation of the porosity and of the subsequent healing processes is more difficult to ascertain. Some structures appear to have evolved gradually throughout the constant, high temperature stage of HIPing. The most obvious structures, however, appear to have evolved on grain boundary cracks that opened during cooling.  相似文献   
108.
Numerical simulations of the thermal evolution of carbonaceous chondrite parent bodies indicate a period of several million years during which convective motion of water could occur. The present study considers variations of permeability, radiogenic heating, and body radius. The model accounts for the radial variation of gravity within the body, melting of ice, freezing of liquid water, and variable water properties and incorporates a realistic equation of state for water. Some regions of a parent body experience no pore water flow while other regions experience hundreds of pore volumes of liquid water flow. The spatial heterogeneity in pore water flow reflects the convective pattern in the body. Hydrothermal alteration of minerals inside the parent body will accordingly vary greatly with location in the body, and one parent body could be the source of chemically diverse meteorites.  相似文献   
109.
How soil erosion rates evolved over the last about 100 ka and how they relate to environmental and climate variability is largely unknown. This is due to a lack of suitable archives that help to trace this evolution. We determined in situ cosmogenic beryllium-10 (10Be) along vertical landforms (tors, boulders and scarps) on the Sila Massif to unravel their local exhumation patterns to develop a surface denudation model over millennia. Due to the physical resistance of tors, their rate of exhumation may be used to derive surface and, thus, soil denudation rates over time. We derived soil denudation rates that varied in the range 0–0.40 mm yr-1. The investigated boulders, however, appear to have experienced repositioning processes about ~20–25 ka bp and were therefore a less reliable archive. The scarps of the Sila upland showed a rapid bedrock exposure within the last 8–15 ka. Overall, the denudation rates increased steadily after 75 ka bp but remained low until about 17 ka bp . The exhumation rates indicate a denudation pulse that occurred about 17–5 ka bp . Since then the rates have continuously decreased. We identify three key factors for these developments – climate, topography and vegetation. Between 75 and 17 ka bp , climate was colder and drier than today. The rapid changes towards warmer and humid conditions at the Pleistocene–Holocene transition apparently increased denudation rates. A denser vegetation cover with time counteracted denudation. Topography also determined the extent of denudation rates in the upland regime. On slopes, denudation rates were generally higher than on planar surfaces. By determining the exhumation rates of tors and scarps, soil erosion rates could be determined over long timescales and be related to topography and particularly to climate. This is key for understanding geomorphic dynamics under current environmental settings and future climate change. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
110.
With a paroxysmal ash eruption on 4 September 2007 and the highly explosive activity continuing in 2008, Oldoinyo Lengai (OL) has dramatically changed its behavior, crater morphology, and magma composition after 25 years of quiet extrusion of fluid natrocarbonatite lava. This explosive activity resembles the explosive phases of 1917, 1940–1941, and 1966–1967, which were characterized by mixed ashes with dominantly nephelinitic and natrocarbonatitic components. Ash and lapilli from the 2007–2008 explosive phase were collected on the slopes of OL as well as on the active cinder cone, which now occupies the entire north crater having buried completely all earlier natrocarbonatite features. The lapilli and ash samples comprise nepheline, wollastonite, combeite, Na-åkermanite, Ti-andradite, resorbed pyroxene and Fe–Ti oxides, and a Na–Ca carbonate phase with high but varying phosphorus contents which is similar, but not identical, to the common gregoryite phenocrysts in natrocarbonatite. Lapilli from the active cone best characterize the erupted material as carbonated combeite–wollastonite–melilite nephelinite. The juvenile components represent a fundamentally new magma composition for OL, containing 25–30 wt.% SiO2, with 7–11 wt.% CO2, high alkalies (Na2O 15–19%, K2O 4–5%), and trace-element signatures reminiscent of natrocarbonatite enrichments. These data define an intermediate composition between natrocarbonatite and nephelinite, with about one third natrocarbonatite and two thirds nephelinite component. The data are consistent with a model in which the carbonated silicate magma has evolved from the common combeite–wollastonite nephelinite (CWN) of OL by enrichment of CO2 and alkalies and is close to the liquid immiscible separation of natrocarbonatite from carbonated nephelinite. Material ejected in April/May 2008 indicates reversion to a more common CWN composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号