首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2261篇
  免费   49篇
  国内免费   26篇
测绘学   48篇
大气科学   107篇
地球物理   578篇
地质学   770篇
海洋学   238篇
天文学   372篇
综合类   10篇
自然地理   213篇
  2021年   21篇
  2020年   31篇
  2019年   28篇
  2018年   42篇
  2017年   33篇
  2016年   63篇
  2015年   45篇
  2014年   55篇
  2013年   120篇
  2012年   64篇
  2011年   114篇
  2010年   78篇
  2009年   95篇
  2008年   82篇
  2007年   92篇
  2006年   85篇
  2005年   90篇
  2004年   76篇
  2003年   53篇
  2002年   74篇
  2001年   40篇
  2000年   38篇
  1999年   43篇
  1998年   28篇
  1997年   30篇
  1996年   32篇
  1995年   41篇
  1994年   33篇
  1993年   26篇
  1992年   25篇
  1991年   32篇
  1990年   23篇
  1989年   24篇
  1988年   34篇
  1987年   27篇
  1986年   24篇
  1985年   35篇
  1984年   38篇
  1983年   41篇
  1982年   32篇
  1981年   30篇
  1980年   27篇
  1979年   32篇
  1978年   24篇
  1977年   33篇
  1976年   31篇
  1975年   25篇
  1973年   19篇
  1972年   22篇
  1971年   18篇
排序方式: 共有2336条查询结果,搜索用时 31 毫秒
321.
This is the first paper of a series focused on investigating the star formation and evolutionary history of the two early-type galaxies NGC 1407 and NGC 1400. They are the two brightest galaxies of the NGC 1407 (or Eridanus-A) group, one of the 60 groups studied as part of the Group Evolution Multi-wavelength Study.
Here, we present new high signal-to-noise ratio long-slit spectroscopic data obtained at the ESO 3.6-m telescope and high-resolution multiband imaging data from the Hubble Space Telescope /Advanced Camera for Surveys and wide-field imaging from Subaru Suprime-Cam. We spatially resolved integrated spectra out to ∼0.6 (NGC 1407) and ∼1.3 (NGC 1400) effective radii. The radial profiles of the kinematic parameters v rot, σ, h 3 and h 4 are measured. The surface brightness profiles are fitted to different galaxy light models and the colour distributions analysed. The multiband images are modelled to derive isophotal shape parameters and residual galaxy images. The parameters from the surface brightness profile fitting are used to estimate the mass of the possible central supermassive black hole in NGC 1407. The galaxies are found to be rotationally supported and to have a flat core in the surface brightness profiles. Elliptical isophotes are observed at all radii and no fine structures are detected in the residual galaxy images. From our results, we can also discard a possible interaction between NGC 1400, NGC 1407 and the group intergalactic medium. We estimate a mass of  ∼1.03 × 109 M  for the supermassive black hole in NGC 1407 galaxy.  相似文献   
322.
The magnetic Reynolds number, R M, is defined as the product of a characteristic scale and associated flow speed divided by the microphysical magnetic diffusivity. For laminar flows, R M also approximates the ratio of advective to dissipative terms in the total magnetic energy equation, but for turbulent flows this latter ratio depends on the energy spectra and approaches unity in a steady state. To generalize for flows of arbitrary spectra we define an effective magnetic dissipation number,   R M,e  , as the ratio of the advection to microphysical dissipation terms in the total magnetic energy equation, incorporating the full spectrum of scales, arbitrary magnetic Prandtl numbers, and distinct pairs of inner and outer scales for magnetic and kinetic spectra. As expected, for a substantial parameter range   R M,e∼ O (1) ≪ R M  . We also distinguish   R M,e  from     where the latter is an effective magnetic Reynolds number for the mean magnetic field equation when a turbulent diffusivity is explicitly imposed as a closure. That   R M,e  and     approach unity even if   R M≫ 1  highlights that, just as in hydrodynamic turbulence, energy dissipation of large-scale structures in turbulent flows via a cascade can be much faster than the dissipation of large-scale structures in laminar flows. This illustrates that the rate of energy dissipation by magnetic reconnection is much faster in turbulent flows, and much less sensitive to microphysical reconnection rates compared to laminar flows.  相似文献   
323.
Evapotranspiration (ET) is one of the major water exchange processes between the earth's surface and the atmosphere. ET is a combined process of evaporation from open water bodies, bare soil and plant surfaces, and transpiration from vegetation. Remote sensing-based ET models have been developed to estimate spatially distributed ET over large regions, however, many of them reportedly underestimate ET over semi-arid regions (Jamshidi et al., Journal of Hydrometeorology, 2019, 20, 947–964). In this work, we show that underestimation of ET can occur due to the open water evaporation from flooded rice paddies ignored in the existing ET models. To address the gap in ET estimation, we have developed a novel approach that accounts for the missing ET component over flooded rice paddies. Our method improved ET estimates by a modified Penman-Monteith algorithm that considered the fraction of open water evaporation from flooded rice paddies. Daily ET was calculated using ground based meteorological data and the MODIS satellite data over the Krishna River Basin. Seasonal and annual ET values over the Krishna Basin were compared with two different ET algorithms. ET estimates from these two models were also compared for different crop combinations. Results were validated with flux tower-based measurements from other studies. We have identified a 17 mm/year difference in average annual ET over the Krishna River Basin with this new ET algorithm. This is very critical in basin scale water balance analysis and water productivity studies.  相似文献   
324.
Analysis of Earth observation (EO) data, often combined with geographical information systems (GIS), allows monitoring of land cover dynamics over different ecosystems, including protected or conservation sites. The aim of this study is to use contemporary technologies such as EO and GIS in synergy with fragmentation analysis, to quantify the changes in the landscape of the Rajaji National Park (RNP) during the period of 19 years (1990–2009). Several statistics such as principal component analysis (PCA) and spatial metrics are used to understand the results. PCA analysis has produced two principal components (PC) and explained 84.1% of the total variance, first component (PC1) accounted for the 57.8% of the total variance while the second component (PC2) has accounted for the 26.3% of the total variance calculated from the core area metrics, distance metrics and shape metrics. Our results suggested that notable changes happened in the RNP landscape, evidencing the requirement of taking appropriate measures to conserve this natural ecosystem.  相似文献   
325.
George E. McGill 《Icarus》1974,21(4):437-447
This paper is a test of published theoretical and experimental studies of crater erosion by micrometeorite bombardment which predict systematic variations in the morphology of lunar craters as a function of crater diameter and crater age. Numerical, ranking-type degradation classifications indicate that the craters on Mare Imbrium and Mare Tranquillitatus confirm these predictions by showing a systematic increase in degradation with decreasing diameter for craters smaller than a few kilometers in diameter but larger than the equilibrium diameter, and by showing fixed proportions of fresh, moderately degraded and very degraded craters under equilibrium conditions. Furthermore, the relative ages of the two mare surfaces may be determined using a diameter/mean-degradation-number curve. These determinations of relative age and process of crater erosion are both essentially independent of the traditionally studied crater diameter/frequency relationships. Morphologies of terra craters near Mare Humorum suggest a young, non-equilibrium crater population superposed on a perimordial population with about equilibrium proportions of fresh, moderately degraded and very degraded craters. The primordial population has been modified by pre-Imbrian or early Imbrian deposition of blanketing deposits. A comparative study of several crater degradation classifications indicates that all are essentially interchangeable.  相似文献   
326.
327.
328.
329.
330.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号