Lake Bonneville marl provides a stratigraphic record of lake history preserved in its carbonate minerals and stable isotopes. We have analyzed the marl in shallow cores taken at three localities in the Bonneville basin. Chronology for the cores is provided by dated volcanic ashes, ostracode biostratigraphy, and a distinctive lithologic unit believed to have been deposited during and immediately after the Bonneville Flood.A core taken at Monument Point at the north shore of Great Salt Lake encompasses virtually the entire Bonneville lake cycle, including the 26.5 ka Thiokol basaltic ash at the base and deposits representing the overflowing stage at the Provo shoreline at the top of the core. Two cores from the Old River Bed area near the threshold between the Sevier basin and the Great Salt Lake basin (the main body of Lake Bonneville) represent deposition from the end of the Stansbury oscillation ( 20 ka) to post-Provo time ( 13 ka), and one core from near Sunstone Knoll in the Sevier basin provides a nearly complete record of the period when Lake Bonneville flooded the Sevier basin (20–13 ka).In all cores, percent calcium carbonate, the aragonite to calcite ratio, and percent sand were measured at approximately 2-cm intervals, and 18O and 13C were determined in one core from the Old River Bed area. The transgressive period from about 20 ka to 15 ka is represented in all cores, but the general trends and the details of the records are different, probably as a result of water chemistry and water balance differences between the main body and the Sevier basin because they were fed by different rivers and had different hypsometries. The Old River Bed marl sections are intermediate in position and composition between the Monument Point and Sunstone Knoll sections. Variations in marl composition at the Old River Bed, which are correlated with lake-level changes, were probably caused by changes in the relative proportions of water from the two basins, which were caused by shifts in water balance in the lake.This is the second paper in a series of papers published in this issue on Climatic and Tectonic Rhythms in Lake Deposits. 相似文献
The Central Mackenzie Valley (CMV) area of Northwest Territories is underlain by Precambrian basement belonging to the North American Craton. The potential of this area to host kimberlitic diamond deposits is relatively high judging from the seismologically-defined lithospheric thickness, age of basement rocks (2.2–1.7 Ga) and presence of kimberlite indicator minerals (KIMs) in Quaternary sediments. This study presents data for a large collection of KIMs recovered from stream sediments and till samples from two study areas in the CMV, the Horn Plateau and Trout Lake. In the processed samples, peridotitic garnets dominate the KIM grain count for both regions (> 25% each) while eclogitic garnet is almost absent in both regions (< 1% each). KIM chemistry for the Horn Plateau indicates significant diamond potential, with a strong similarity to KIM systematics from the Central and Western Slave Craton. The most significant issue to resolve in assessing the local diamond potential is the degree to which KIM chemistry reflects local and/or distal kimberlite bodies. Radiogenic isotope analysis of detrital kimberlite-related CMV ilmenite and rutile grains requires at least two broad age groups for eroded source kimberlites. Statistical analysis of the data suggests that it is probable that some of these KIMs were derived from primary and/or secondary sources within the CMV area, while others may have been transported to the area from the east-northeast by Pleistocene glacial and/or glaciofluvial systems. At this stage, KIM chemistry does not allow the exact location of the kimberlitic source(s) to be constrained.
The fossil diatom records preserved in radiometrically dated sediment cores from four shallow lakes in the Norfolk Broads, UK (Barton Broad, Rollesby Broad, Wroxham Broad and Upton Broad) were analysed. A weighted-averaging partial least squares (WA-PLS) diatom-total phosphorus (TP) transfer function, based on a training set of 152 mostly shallow (maximum depth < 3 m) lakes in northwest Europe, was applied to the full diatom dataset for each core to reconstruct the past TP concentrations of the lakes. Owing to the dominance of non-planktonic Staurosira, Pseudostaurosira and Staurosirella spp. (formerly classified in the genus Fragilaria) throughout the diatom records, the quantitative diatom inferred TP (DI-TP) concentrations did not adequately reflect the changes that occurred in the lakes as indicated by shifts in the other diatom taxa, or as reported in the literature. This was most apparent at Barton Broad and Rollesby Broad, where there was a marked increase in the importance of planktonic taxa associated with highly nutrient-rich waters but no increase in DI-TP. The modern and fossil data were thus square-root transformed to downweight the dominant taxa and the new transfer function was applied to the cores. An improvement was seen only in the reconstruction for Barton Broad. Finally, the Staurosira, Pseudostaurosira and Staurosirella spp. were removed from the modern and fossil diatom data, and the transfer function was re-applied. The trends in DI-TP became less clear, particularly for Upton Broad and Barton Broad, owing to a paucity of data for calibration once these taxa were deleted from the counts data. The problems associated with reconstructing trophic status and determining TP targets for restoration from fossil diatom assemblages in these systems are discussed. 相似文献
This paper provides a new deglacial chronology for retreat of the Irish Ice Sheet from the continental shelf of western Ireland to the adjoining coastline, a region where the timing and drivers of ice recession have never been fully constrained. Previous work suggests maximum ice-sheet extent on the outer western continental shelf occurred at ~26–24 cal. ka BP with the initial retreat of the ice marked by the production of grounding-zone wedges between 23–21.1 cal. ka BP. However, the timing and rate of ice-sheet retreat from the inner continental shelf to the present coast are largely unknown. This paper reports 31 new terrestrial cosmogenic nuclide (TCN) ages from erratics and ice-moulded bedrock and three new optically stimulated luminescence (OSL) ages on deglacial outwash. The TCN data constrain deglaciation of the near coast (Aran Islands) to ~19.5–18.5 ka. This infers ice retreated rapidly from the mid-shelf after 21 ka, but the combined effects of bathymetric shallowing and pinning acted to stabilize the ice at the Aran Islands. However, marginal stability was short-lived, with multiple coastal sites along the Connemara/Galway coasts demonstrating ice recession under terrestrial conditions by 18.2–17. ka. This pattern of retreat continued as ice retreated eastward through inner Galway Bay by 16.5 ka. South of Galway, the Kilkee–Kilrush Moraine Complex and Scattery Island moraines point to late stage re-advances of the ice sheet into southern County Clare ~14.1–13.3 ka, but the large errors associated with the OSL ages make correlation with other regional re-advances difficult. It seems more likely that these moraines are the product of regional ice lobes adjusting to internal ice-sheet dynamics during deglaciation in the time window 17–16 ka. 相似文献
A computer-based study of the impact of the proposed Wabo hydroelectric scheme on the Purari River, Papua New Guinea was carried out. The HEC-6 model, Scour and Deposition in Rivers and Reservoirs developed by the Hydrologic Engineering Centre was used to simulate the effect of the dam on sediment transport and erosion in the lower Purari. Two runs with the model were carried out. The first one was used to establish baseline conditions and the second modelled dam impact. Before the study was carried out, data had to be collected on channel geometry, sediment input, river bed material size composition and hydraulic conditions in the river. Supplementary models also had to be developed to fill in gaps in runoff records and to describe flow in the river during power generation. Results of the investigation indicate that limited erosion will occur because of bed-armouring and the river will adjust towards a new equilibrium condition quite rapidly. The sediment output of the river into the Purari delta will change, load in the clay, silt and sand/gravel fractions decreasing by 22, 53 and 78 per cent respectively. 相似文献
Climate change vulnerability depends on who you are, where you are and what you do. The indigenous communities who primarily depend on natural resources for subsistence livelihoods are among the first and most affected by climate change. Climate models have predicted pronounced warming in high altitude regions of the Himalayas. The transhumant communities of the Himalayas follow traditional lifestyles based on seasonal livestock rearing and subsistence agriculture. There is however, no information on how vulnerable transhumant communities are to climate change, and how vulnerability of transhumant herders differs across the mountainous areas of Nepal. Based on semi-structured interviews with transhumant herders and using the IPCC climate change vulnerability framework, this study assessed and compared the vulnerability of transhumant communities from three districts representing Eastern, Central and Western mountainous region of Nepal. The results showed that the livelihood vulnerability and the climate change vulnerability differ across sites; both of them having lowest index values in the Central region. The vulnerability dimensions viz. exposure, sensitivity and adaptive capacity are largely influenced by diversity in livelihood strategies, income sources and crops, and access to food, water and health facilities. The findings will inform the design of policies and programmes to reduce vulnerability and enhance adaptive capacity of indigenous communities in general and the transhumant communities of the Himalayas in particular. 相似文献