首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   11篇
  国内免费   1篇
测绘学   6篇
大气科学   7篇
地球物理   51篇
地质学   77篇
海洋学   15篇
天文学   7篇
综合类   1篇
自然地理   50篇
  2022年   1篇
  2021年   6篇
  2020年   9篇
  2019年   8篇
  2018年   5篇
  2017年   8篇
  2016年   6篇
  2015年   5篇
  2014年   10篇
  2013年   15篇
  2012年   4篇
  2011年   9篇
  2010年   9篇
  2009年   12篇
  2008年   9篇
  2007年   9篇
  2006年   8篇
  2005年   10篇
  2004年   9篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   7篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
  1955年   1篇
排序方式: 共有214条查询结果,搜索用时 31 毫秒
91.
92.
93.
94.
Direct exploration of subglacial lakes buried deep under the Antarctic Ice Sheet has yet to be achieved. However, at retreating margins of the ice sheet, there are a number of locations where former subglacial lakes are emerging from under the ice but remain perennially ice covered. One of these lakes, Hodgson Lake (72°00.549′S, 068°27.708′W) has emerged from under more than 297–465 m of glacial ice during the last few thousand years. This paper presents data from a multidisciplinary investigation of the palaeolimnology of this lake through a study of a 3.8 m sediment core extracted at a depth of 93.4 m below the ice surface. The core was dated using a combination of radiocarbon, optically stimulated luminescence, and relative palaeomagnetic intensity dating incorporated into a chronological model. Stratigraphic analyses included magnetic susceptibility, clast provenance, organic content, carbonate composition, siliceous microfossils, isotope and biogeochemical markers. Based on the chronological model we provisionally assign a well-defined magnetic polarity reversal event at ca 165 cm in the lake sediments to the Mono Lake excursion (ca 30–34 ka), whilst OSL measurements suggest that material incorporated into the basal sediments might date to 93 ± 9 ka. Four stratigraphic zones (A–D) were identified in the sedimentological data. The chronological model suggests that zones A–C were deposited between Marine Isotope Stages 5–2 and zone A during Stage 1, the Holocene. The palaeolimnological record tracks changes in the subglacial depositional environment linked principally to changing glacier dynamics and mass transport and indirectly to climate change. The sediment composition in zones A–C consists of fine-grained sediments together with sands, gravels and small clasts. There is no evidence of overriding glaciers being in contact with the bed reworking the stratigraphy or removing this sediment. This suggests that the lake existed in a subglacial cavity beneath overriding LGM ice. In zone D there is a transition to finer grained sediments characteristic of lower energy delivery coupled with a minor increase in the organic content attributed either to increases in allochthonous organic material being delivered from the deglaciating catchment, a minor increase in within-lake production or to an analytical artefact associated with an increase in the clay fraction. Evidence of biological activity is sparse. Total organic carbon varies from 0.2 to 0.6%, and cannot be unequivocally linked to in situ biological activity as comparisons of δ13C and C/N values with local reference data suggest that much of it is derived from the incorporation of carbon in catchment soils and gravels and possibly old CO2 in meteoric ice. We use the data from this study to provide guidelines for the study of deep continental subglacial lakes including establishing sediment geochronologies, determining the extent to which subglacial sediments might provide a record of glaciological and environmental change and a brief review of methods to use in the search for life.  相似文献   
95.
96.
97.
The recent disintegration of Antarctic Peninsula ice shelves, and the associated accelerated discharge and retreat of continental glaciers, has highlighted the necessity of quantifying the current rate of Antarctic ice mass loss and the regional contributions to future sea-level rise. Observations of present day ice mass change need to be corrected for ongoing glacial isostatic adjustment, a process which must be constrained by geological data. However, there are relatively little geological data on the geometry, volume and melt history of the Antarctic Peninsula Ice Sheet (APIS) after Termination 1, and during the Holocene so the glacial isostatic correction remains poorly constrained. To address this we provide field constraints on the timing and rate of APIS deglaciation, and changes in relative sea-level (RSL) for the north-eastern Antarctic Peninsula based on geomorphological evidence of former marine limits, and radiocarbon-dated marine-freshwater transitions from a series of isolation basins at different altitudes on Beak Island. Relative sea-level fell from a maximum of c. 15 m above present at c. 8000 cal yr BP, at a rate of 3.91 mm yr?1 declining to c. 2.11 mm yr?1 between c. 6900–2900 cal yr BP, 1.63 mm yr?1 between c. 2900–1800 cal yr BP, and finally to 0.29 mm yr?1 during the last c. 1800 years. The new Beak Island RSL curve improves the spatial coverage of RSL data in the Antarctic. It is in broad agreement with some glacio-isostatic adjustment models applied to this location, and with work undertaken elsewhere on the Antarctic Peninsula. These geological and RSL constraints from Beak Island imply significant thinning of the north-eastern APIS by the early Holocene. Further, they provide key data for the glacial isostatic correction required by satellite-derived gravity measurements of contemporary ice mass loss, which can be used to better assess the future contribution of the APIS to rising sea-levels.  相似文献   
98.
99.
Rapidly-flowing sectors of an ice sheet (ice streams) can play an important role in abrupt climate change through the delivery of icebergs and meltwater and the subsequent disruption of ocean thermohaline circulation (e.g., the North Atlantic's Heinrich events). Recently, several cores have been raised from the Arctic Ocean which document the existence of massive ice export events during the Late Pleistocene and whose provenance has been linked to source regions in the Canadian Arctic Archipelago. In this paper, satellite imagery is used to map glacial geomorphology in the vicinity of Victoria Island, Banks Island and Prince of Wales Island (Canadian Arctic) in order to reconstruct ice flow patterns in the highly complex glacial landscape. A total of 88 discrete flow-sets are mapped and of these, 13 exhibit the characteristic geomorphology of palaeo-ice streams (i.e., parallel patterns of large, highly elongated mega-scale glacial lineations forming a convergent flow pattern with abrupt lateral margins). Previous studies by other workers and cross-cutting relationships indicate that the majority of these ice streams are relatively young and operated during or immediately prior to deglaciation. Our new mapping, however, documents a large (> 700 km long; 110 km wide) and relatively old ice stream imprint centred in M'Clintock Channel and converging into Viscount Melville Sound. A trough mouth fan located on the continental shelf suggests that it extended along M'Clure Strait and was grounded at the shelf edge. The location of the M'Clure Strait Ice Stream exactly matches the source area of 4 (possibly 5) major ice export events recorded in core PS1230 raised from Fram Strait, the major ice exit for the Arctic Ocean. These ice export events occur at 12.9, 15.6, 22 and 29.8 ka (14C yr BP) and we argue that they record vigorous episodes of activity of the M'Clure Strait Ice Stream. The timing of these events is remarkably similar to the North Atlantic's Heinrich events and we take this as evidence that the M'Clure Strait Ice Stream was also activated around the same time. This may hold important implications for the cause of the North Atlantic's Heinrich events and hints at the possibility of a pan-ice sheet response.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号