首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   11篇
  国内免费   1篇
测绘学   6篇
大气科学   7篇
地球物理   51篇
地质学   77篇
海洋学   15篇
天文学   7篇
综合类   1篇
自然地理   50篇
  2022年   1篇
  2021年   6篇
  2020年   9篇
  2019年   8篇
  2018年   5篇
  2017年   8篇
  2016年   6篇
  2015年   5篇
  2014年   10篇
  2013年   15篇
  2012年   4篇
  2011年   9篇
  2010年   9篇
  2009年   12篇
  2008年   9篇
  2007年   9篇
  2006年   8篇
  2005年   10篇
  2004年   9篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   7篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
  1955年   1篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
131.
Protection of groundwater‐dependent ecosystems (GDEs) is an important criterion in sustainable groundwater management, particularly when human water consumption is in competition with environmental water demands; however, the delineation of GDEs is commonly a challenging task. The Groundwater‐dependent Ecosystem Mapping (GEM) method proposed here is based on interpretation of the land surface response to the drying process derived from combined changes in two multispectral indices, the Normalised Difference Vegetation Index and the Normalised Difference Wetness Index, both derived from Landsat imagery. The GEM method predicts three land cover classes used for delineation of potential GDEs: vegetation with permanent access to groundwater; vegetation with diminishing access to groundwater; and water bodies that can persist through a prolonged dry period. The method was applied to a study site in the Ellen Brook region of Western Australia, where a number of GDEs associated with localised groundwater, diffuse discharge zones, and riparian vegetation were known. The estimated accuracy of the method indicated a good agreement between the predicted and known GDEs; Producer's accuracy was calculated as up to 91% for some areas. The method is most applicable for mapping GDEs in regions with a distinct drying period. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
132.
The effect of potential climate change on groundwater‐dependent vegetation largely depends on the nature of the climate change (drying or wetting) and the level of current ecosystem dependence on groundwater resources. In south‐western Australia, climate projections suggest a high likelihood of a warmer and drier climate. The paper examines the potential environmental impacts by 2030 at the regional scale on groundwater‐dependent terrestrial vegetation (GDTV) adapted to various watertable depths, on the basis of the combined consideration of groundwater modelling results and the framework for GDTV risk assessment. The methodology was tested for the historical period from 1984 to 2007, allowing validation of the groundwater model results' applicability to such an assessment. Climate change effects on GDTV were evaluated using nine global climate models under three greenhouse gas emission scenarios by applying the climate projections to groundwater models. It was estimated that under dry climate scenarios, GDTV is likely to be under high and severe risk over more than 20% of its current habitat area. The risk is also likely to be higher under an increase in groundwater abstraction above current volumes. The significance of climate change risk varied across the region, depending on both the intensity of the change in water regime and the sensitivity of the GDTV to such change. Greater effects were projected for terrestrial vegetation dependent on deeper groundwater (6–10 m). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
133.
Complex seismic behaviour of soil–foundation–structure (SFS) systems together with uncertainties in system parameters and variability in earthquake ground motions result in a significant debate over the effects of soil–foundation–structure interaction (SFSI) on structural response. The aim of this study is to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. An established rheological soil‐shallow foundation–structure model with equivalent linear soil behaviour and nonlinear behaviour of the superstructure has been used. A large number of models incorporating wide range of soil, foundation and structural parameters were generated using a robust Monte‐Carlo simulation. In total, 4.08 million time‐history analyses were performed over the adopted models using an ensemble of 40 earthquake ground motions as seismic input. The results of the analyses are used to rigorously quantify the effects of foundation flexibility on the structural distortion and total displacement of the superstructure through comparisons between the responses of SFS models and corresponding fixed‐base (FB) models. The effects of predominant period of the FB system, linear vs nonlinear modelling of the superstructure, type of nonlinear model used and key system parameters are quantified in terms of different probability levels for SFSI effects to cause an increase in the structural response and the level of amplification of the response in such cases. The results clearly illustrate the risk of underestimating the structural response associated with simplified approaches in which SFSI and nonlinear effects are ignored. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
134.
We review the post-glacial climate variability along the East Antarctic coastline using terrestrial and shallow marine geological records and compare these reconstructions with data from elsewhere. Nearly all East Antarctic records show a near-synchronous Early Holocene climate optimum (11.5–9 ka BP), coinciding with the deglaciation of currently ice-free regions and the optimum recorded in Antarctic ice and marine sediment cores. Shallow marine and coastal terrestrial climate anomalies appear to be out of phase after the Early Holocene warm period, and show complex regional patterns, but an overall trend of cooling in the terrestrial records. A Mid to Late Holocene warm period is present in many East Antarctic lake and shallow coastal marine records. Although there are some differences in the regional timing of this warm period, it typically occurs somewhere between 4.7 and 1 ka BP, which overlaps with a similar optimum found in Antarctic Peninsula terrestrial records. The differences in the timing of these sometimes abrupt warm events in different records and regions points to a number of mechanisms that we have yet to identify. Nearly all records show a neoglacial cooling from 2 ka BP onwards. There is no evidence along the East Antarctic coastline for an equivalent to the Northern Hemisphere Medieval Warm Period and there is only weak circumstantial evidence in a few places for a cool event crudely equivalent in time to the Northern Hemisphere's Little Ice Age. There is a need for well-dated, high resolution climate records in coastal East Antarctica and particularly in Terre Adélie, Dronning Maud Land and Enderby Land to fully understand the regional climate anomalies, the disparity between marine and terrestrial records, and to determine the significance of the heterogeneous temperature trends being measured in the Antarctic today.  相似文献   
135.
This exploratory study aims to examine (1) the reasons for farmers’ range of climate change beliefs and (2) how those beliefs affect their climate change adaptation responses. Interviews with 11 key-informant irrigators from the South Australian Riverland uncovered skepticism about climate change predictions. Interviewees mostly believed changes to the climate were not human-induced but were a result of natural cycles, which meant that they then felt less obliged to undertake climate-change adaptation responses. With low water allocations and low commodity prices, most did not identify climate change as their most compelling problem. They found it hard to identify climate change adaptation options beyond those they had implemented to manage their immediate problems. The reasons for interviewees’ stated skepticism are complex, but not as equated to disbelief as they might seem. Their beliefs about climate change appear to be chosen to allow them to retain hope for the future.  相似文献   
136.
Submarine external levées are constructional features that develop outside slope channel systems, and are a volumetrically significant component of continental margins. However, detailed observations of their process sedimentology and depositional architecture are rare. Extensive exposures of external levées at multiple stratigraphic intervals and well‐constrained palaeogeographic positions in the Fort Brown Formation, Karoo Basin, South Africa, have been calibrated with research boreholes. This integrated data set permits their origin, evolution and anatomy to be considered, including high‐resolution analysis of sedimentary facies distribution and characterization of depositional sub‐environments. An idealized model of the stratigraphic evolution and depositional architecture of external levées is presented, and variations can be attributed to allogenic (for example, sediment supply) and autogenic (for example, channel migration) factors. Initiation of external levée construction is commonly marked by deposition of a basal sand‐rich facies with sedimentary structures indicating rapid deposition from unconfined flows. These deposits are interpreted as frontal lobes. Propagation of the parent channel, and resultant flow confinement, lead to partial erosion of the frontal lobe and development of constructional relief (levées) by flow overspill and flow stripping. Overall fining‐upwards and thinning‐upwards profiles reflect increased flow confinement and/or waning flow magnitude through time. Identification of a hierarchy of levée elements is not possible due to the absence of internal bounding surfaces or sharp facies changes. The down‐slope taper in levée height and increasing channel sinuosity results in increasing numbers of crevasse lobe deposits, and is reflected by the increased occurrences of channel avulsion events down‐dip. External levées from the Fort Brown Formation are silt‐rich; however their stratigraphic evolution and the distribution of many components (such as sediment waves and crevasse lobe) share commonalities with mud‐rich external levées. This unique integrated data set has permitted the first high‐resolution characterization of external submarine levée systems.  相似文献   
137.
An extensive sediment transport survey took place at Lihir Island (Papua New Guinea), where mining operations involve disposal of waste rocks and soil in nearshore waters. To investigate the potential impact of these practices over neighbouring fringing reefs, turbidity and sediment accumulation were measured continuously for extended periods. Turbidity records provided a map of observed impact zones based on turbidity thresholds. The main zoning features were (a) that an extreme turbidity gradient persists between the inner harbour (turbidity levels of 100-1000 mg l(-1)) and the adjacent reefs (turbidity levels in the order of 10 mg l(-1)), and (b) that observed zones conform with pre-operations impact predictions. Accumulation measurements unveiled no significant sediment accumulation over fringing coral reefs. This study contributes to the understanding of the potential impact of sediment discharge to nearshore waters.  相似文献   
138.
 The 1991–1993 lava flow is the most voluminous flow erupted at Mount Etna, Sicily, in over 300 years. Estimates of the volume obtained by various methods range from 205×106 m3 (Tanguy 1996) to over 500×106 m3 (Barberi et al. 1993). This paper describes the results of an electronic distance measurement (EDM)-based field survey of the upper surface of the 1991–1993 flow field undertaken in 1995. The results were digitised, interpolated and converted into a digital elevation model and then compared with a pre-eruption digital elevation model, constructed from a 1 : 25 000 contour map of the area, based on 1989 aerial photographs. Our measurements are the most accurate to date and show that the 1991–1993 lava flow occupies a volume of 231±29×106 m3. Received: 20 July 1996 / Accepted: 5 November 1996  相似文献   
139.
The ∼380-m-thick mudstone–siltstone-dominated Vischkuil Formation represents the initiation phase of a 1.3-km-thick prograding basin floor to slope to shelf succession that marks a significant increase in the rate of siliciclastic sediment supply to the early Karoo Basin in the Permian. In the upper Vischkuil Formation three well exposed, widespread (∼3000 km2) 10–70-m-thick intervals of deformed strata are encased within undeformed sediments. Such chaotic mass movement deposits that are mappable over areas comparable with seismic-scale mass transport deposits are commonly associated with submarine slope settings. However, the surrounding lithofacies and the correlation of distinctive marker beds indicate that these deformation intervals developed in a distal low gradient basin floor setting. The deformed intervals comprise a lower division of tight down-flow verging folds dissected by thrust planes that sole out onto a highly sheared décollement surface that are interpreted as slides. The lower divisions are overlain by an upper division of chaotic lithofacies with large contorted clasts of sandstone supported by a fine-grained matrix interpreted as a debrite. The juxtaposition of these lithofacies, the distribution of thickness of the divisions, and their close kinematic relationships indicate that the emplacement of the debris-flows triggered and drove the underlying slide, in a low-gradient distal setting. Individual beds in the deformed intervals can be mapped laterally into undeformed strata indicating limited movement of the slide. Therefore, widespread zones of syn-sedimentary deformation in deep-water settings do not necessarily indicate a slope setting and should not be used as single criterion to determine depositional setting. When associated with major debrites they may be developed on a flat basin floor.  相似文献   
140.
The evolutionary and biogeographic history of the contemporary Antarctic terrestrial and marine biotas reveals many components of ancient origin. For large elements of the terrestrial biota, long-term isolation over timescales from hundreds of thousands to tens of millions of years, and thus persistence through multiple glacial cycles, now appears to be the norm rather than the exception. For the marine biota there are some parallels with benthic communities also including ancient components, together with an incidence of species-level endemism indicating long-term isolation on the Antarctic continental shelf. Although it has long been known that a few ice-free terrestrial locations have existed in Antarctica for up to 10–12 million years, particularly in the Dry Valleys of Victoria Land along with certain nunataks and higher regions of large mountain ranges, these do not provide potential refugia for the majority of terrestrial biota, which occur mainly in coastal and/or low-lying locations and exhibit considerable biogeographic regionalisation within the continent. Current glacial models and reconstructions do not have the spatial resolution to detect unequivocally either the number or geographical distribution of these glacial refugia, or areas of the continental shelf that have remained periodically free from ice scouring, but do provide limits for their maximum spatial extent. Recent work on the evolution of the terrestrial biota indicates that refugia were much more widespread than has been recognised and it is now clear that terrestrial biology provides novel constraints for reconstructing the past glacial history of Antarctica, and new marine biological investigations of the Antarctic shelf are starting to do likewise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号