首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31442篇
  免费   1773篇
  国内免费   3048篇
测绘学   2268篇
大气科学   3149篇
地球物理   6123篇
地质学   15720篇
海洋学   2131篇
天文学   1926篇
综合类   2831篇
自然地理   2115篇
  2024年   54篇
  2023年   156篇
  2022年   475篇
  2021年   529篇
  2020年   449篇
  2019年   493篇
  2018年   5205篇
  2017年   4425篇
  2016年   3061篇
  2015年   739篇
  2014年   628篇
  2013年   573篇
  2012年   1532篇
  2011年   3233篇
  2010年   2503篇
  2009年   2733篇
  2008年   2271篇
  2007年   2721篇
  2006年   426篇
  2005年   473篇
  2004年   600篇
  2003年   587篇
  2002年   414篇
  2001年   216篇
  2000年   220篇
  1999年   244篇
  1998年   181篇
  1997年   164篇
  1996年   151篇
  1995年   139篇
  1994年   107篇
  1993年   94篇
  1992年   83篇
  1991年   52篇
  1990年   56篇
  1989年   50篇
  1988年   25篇
  1987年   30篇
  1986年   31篇
  1985年   31篇
  1984年   9篇
  1983年   10篇
  1982年   8篇
  1981年   23篇
  1980年   32篇
  1979年   9篇
  1978年   3篇
  1976年   6篇
  1958年   4篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
161.
本文为胶州湾海鞘类区系研究之一,涉及柄海鞘科2属7种,其中二种为新种。  相似文献   
162.
报道一种新的有效催化剂-碘-钒盐和在一定条件下合成四溴邻苯二甲酸酐的方法。探讨催化剂的组成配比、用量、温度及废酸循环使用等因素对合成方法的影响。该催化剂的催化效果和常用的碘、碘-铁催化剂相同,适用于四溴邻苯二甲酸酐的合成。  相似文献   
163.
Hydrodynamic and sediment transport measurements from instrumentation deployed during a 54-day winter period at two sites on the Louisiana inner shelf are presented. Strong extratropical storms, with wind speeds of 7.8 to 15.1 m s-1, were the dominant forcing mechanism during the study. These typically caused mean oscillatory flows and shear velocities about 33% higher than fair weather (averaging 12.3 and 3.2 cm s-1 at the landward site, and 11.4 and 2.7 cm s-1 at the seaward site, respectively). These responses were coupled with mean near-bottom currents more than twice as strong as during fair weather (10.3 and 7.5 cm s-1 at the landward and seaward sites, respectively). These flowed in approximately the same direction as the veering wind, causing a net offshore transport of fine sand. Weak storms were responsible for little sediment transport whereas during fair weather, onshore sand transport of approximately 25-75% of the storm values appears to have occurred. This contradicts previous predictions of negligible fair-weather sediment movement on this inner shelf.  相似文献   
164.
A high-resolution seismic survey covering more than 2,000 km2 has revealed the processes responsible for the slope morphology and channel sedimentation across the forearc slope-basin of the Kurile Arc–NE Japan Arc collision zone, offshore from Tokachi (Hokkaido, Japan). The dominant slope contours parallel the trench but, in the middle and lower reaches of the southern slope, contours are convex-shaped with an offshore trend. This sector of the slope is traversed diagonally by the Hiroo submarine channel. The offshore-trending convex contours and the channel course have developed through the interplay of tectonic and sedimentary processes, including the development of anticlines, anticline-induced lobe sedimentation and channel avulsion. In its upper reaches, the channel is restricted by a topographic low associated with NNW–SSE-trending anticlines which developed within the upper and middle slope sectors during late Miocene uplift. The uplift timing and trend of these anticlines indicate that they resulted from collision, the channel sedimentology and slope morphology of the middle and lower slopes having been influenced by Pliocene uplift of NE–SW-trending anticlines. The trends of these anticlines parallel those of the Kurile Trench. The Pliocene and early Pleistocene strata of the middle and lower slopes consist of ponded lobe sediments deposited along the palaeo-Hiroo submarine channel on the landward side of the anticlines. As a lobe pile accumulated, the channel thalweg shifted to the north of the stack, allowing the channel to bypass the topographic high formed by the growing stack. Thick levee deposits built up along the channel course during the late Pleistocene and Holocene. These levees, along with the Pliocene and early Pleistocene lobes, are reflected in the present-day sigmoid-shaped, convex offshore-trending contours. Thus, the interplay of subduction- and collision-related anticlines, tectonic-related channel ponding, and avulsion has contributed to the slope morphology of the southern Kurile Trench.  相似文献   
165.
The variation of the backscatter strength with the angle of incidence is an intrinsic property of the seafloor, which can be used in methods for acoustic seafloor characterization. Although multibeam sonars acquire backscatter over a wide range of incidence angles, the angular information is normally neglected during standard backscatter processing and mosaicking. An approach called Angular Range Analysis has been developed to preserve the backscatter angular information, and use it for remote estimation of seafloor properties. Angular Range Analysis starts with the beam-by-beam time-series of acoustic backscatter provided by the multibeam sonar and then corrects the backscatter for seafloor slope, beam pattern, time varying and angle varying gains, and area of insonification. Subsequently a series of parameters are calculated from the stacking of consecutive time series over a spatial scale that approximates half of the swath width. Based on these calculated parameters and the inversion of an acoustic backscatter model, we estimate the acoustic impedance and the roughness of the insonified area on the seafloor. In the process of this inversion, the behavior of the model parameters is constrained by established inter-property relationships. The approach has been tested using a 300 kHz Simrad EM3000 multibeam sonar in Little Bay, NH. Impedance estimates are compared to in situ measurements of sound speed. The comparison shows a very good correlation, indicating the potential of this approach for robust seafloor characterization.  相似文献   
166.
Two single-channel seismic (SCS) data sets collected in 2000 and 2005 were used for a four-dimensional (4D) time-lapse analysis of an active cold vent (Bullseye Vent). The data set acquired in 2000 serves as a reference in the applied processing sequence. The 4D processing sequence utilizes time- and phase-matching, gain adjustments and shaping filters to transform the 2005 data set so that it is most comparable to the conditions under which the 2000 data were acquired. The cold vent is characterized by seismic blanking, which is a result of the presence of gas hydrate in the subsurface either within coarser-grained turbidite sands or in fractures, as well as free gas trapped in these fracture systems. The area of blanking was defined using the seismic attributes instantaneous amplitude and similarity. Several areas were identified where blanking was reduced in 2005 relative to 2000. But most of the centre of Bullseye Vent and the area around it were seen to be characterized by intensified blanking in 2005. Tracing these areas of intensified blanking through the three-dimensional (3D) seismic volume defined several apparent new flow pathways that were not seen in the 2000 data, which are interpreted as newly generated fractures/faults for upward fluid migration. Intensified blanking is interpreted as a result of new formation of gas hydrate in the subsurface along new fracture pathways. Areas with reduced blanking may be zones where formerly plugged fractures that had trapped some free gas may have been opened and free gas was liberated.  相似文献   
167.
We collected surface water along the 142nd E meridian from Tasmania to Antarctica in December 1999. We measured temperature, salinity and total chlorophyll a; additionally, we collected suspended particle size fractions and used fluorometric analysis to determine the quantity of chlorophyll a in each of four cell size classes: picoplankton (<3 μm), two nanoplankton fractions (3–10 μm and 10–20 μm) and microplankton (> 20 μm). Changes in temperature and salinity show that we crossed 6 water masses separated by 5 fronts. We found low abundance (<0.2 mg m−3) of chlorophyll in all size classes, with the exception of higher values near the continent (0.2 to 0.4 mg m−3). Lowest chlorophyll values (<0.1 mg m−3) were found in the Polar Frontal Zone (51° to 54°S). Microplankton made up the largest portion of total chlorophyll throughout most of the region. We conclude that biomass of all phytoplankton fractions, especially pico-and nanoplankton, was constrained by limiting factors, most probably iron, throughout the region and that ecosystem dynamics within a zone are not circumpolar but are regionalized within sectors.  相似文献   
168.
Abstract

Construction of the reefs in the South China Sea is a significant foundation to the secure stability and economic development of China. The construction of an airport runway is necessary for this realization. The calcareous sand is the main primary material in the runway construction. A certain type of calcareous sand near a certain reef of the South China Sea was studied in this paper. To investigate this specific calcareous sand, quartz sand was used as a reference for comparison. Microscopic 3-D imaging, compression and triaxial tests were conducted to test the micro, squeezing and shear properties. The effect mechanism of gradation on the calcareous sand’s compressibility and shear characteristics are discussed from a mesoscopic viewpoint using 3-D morphology. Calcareous sand particles are multiangular and flatter in comparison with quartz sand. The larger the particle sizes are, the more different the two sands’ morphologies are. The compressibility of calcareous sand is greater, and the effect of the coarse fraction (5–1?mm) content in the gradation plays the most significant role in this feature. When the coarse particles’ content is less than 25% and the mass ratio of the middle and fine particles (M) is constant, there is the worst coarse fraction content causing the calcareous sand to be most likely compressed. The worst coarse fraction content decreases with the increase in M, and an empirical formula is proposed. When the gradation, relative density and confining pressure are the same, the peak shear stress and strain of calcareous sand are all at a high level. The effect of confining pressure is manifested in calcareous sand. The shear strength and dilation of calcareous sand are also most affected by the medium coarse fraction (5–0.25?mm) content.  相似文献   
169.
The summer distributions of planktonic microbial communities (heterotrophic and phtosynthetic bacteria, phtosynthetic and heterotrophic nanoflagellates, ciliate plankton, and microphytoplankton) were compared between inner and outer areas of Lake Sihwa, divided by an artificial breakwater, located on the western coast of Korea, in September 2003. The semienclosed, inner area was characterized by hyposaline surface water (<17 psu), and by low concentrations of dissolved oxygen (avg. 0.4 mg L1) and high concentrations of inorganic nutrients (nitrogenous nutrients >36 μM, phosphate <4 μM) in the bottom layer. Higher densities of heterotrophic bacteria and nanoflagellates also occurred in the inner area than did in the outer area, while microphytoplankton (mainly diatoms) occurred abundantly in the outer area. A tiny tintinnid ciliate, Tintinnopsis nana, bloomed into more than 106 cells L1 at the surface layer of the inner area, while its abundance was much lower (103-104 cells L1) in the outer area of the breakwater. Ciliate abundance was highly correlated with heterotrophic bacteria (r = 0.886, p < 0.001) and heterotrophic flagellates (r = 0.962, p < 0.001), indicating that rich food availability may have led to theT. nana bloom. These results suggest that the breakwater causes the eutrophic environment in artificial lakes with limited flushing of enriched water and develops into abundant bacteria, nanoflagellates, and ciliates.  相似文献   
170.
The recent sea-ice reduction in the Arctic Ocean is not spatially uniform, but is disproportionally large around the Northwind Ridge and Chukchi Plateau compared to elsewhere in the Canada Basin. In the Northwind Ridge region, Pacific Summer Water (PSW) delivered from the Bering Sea occupies the subsurface layer. The spatial distribution of warm PSW shows a quite similar pattern to the recent ice retreat, suggesting the influence of PSW on the sea-ice reduction. To understand the regionality of the recent ice retreat, we examine the dynamics and timing of the delivery of the PSW into this region. Here, we adopt a two-layer linearized potential vorticity equation to investigate the behavior of Rossby waves in the presence of a topographic discontinuity in the high latitude ocean. The analytical results show a quite different structure from those of mid-latitude basins due to the small value of β. Incident barotropic waves excited by the sea-ice motion with large annual variation can be scattered into both barotropic and baroclinic modes at the discontinuity. Since the scattered baroclinic Rossby wave with annual frequency cannot propagate freely, a strong baroclinic current near the topographic discontinuity is established. The seasonal variation of current near the topographic discontinuity would cause a kind of selective switching system for shelf water transport into the basin. In our simple analytical model, the enhanced northward transport of summer water and reduced northward transport of winter water are well demonstrated. The present study indicates that these basic dynamics imply that a strengthening of the surface forcing during winter in the Canada Basin could cause sea-ice reduction in the Western Arctic through the changes of underlying Pacific Summer Water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号