首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   975篇
  免费   37篇
  国内免费   5篇
测绘学   16篇
大气科学   68篇
地球物理   259篇
地质学   268篇
海洋学   86篇
天文学   189篇
综合类   12篇
自然地理   119篇
  2021年   11篇
  2020年   10篇
  2019年   8篇
  2018年   15篇
  2017年   18篇
  2016年   13篇
  2015年   14篇
  2014年   25篇
  2013年   65篇
  2012年   28篇
  2011年   35篇
  2010年   43篇
  2009年   39篇
  2008年   44篇
  2007年   40篇
  2006年   39篇
  2005年   49篇
  2004年   39篇
  2003年   26篇
  2002年   25篇
  2001年   20篇
  2000年   29篇
  1999年   24篇
  1998年   25篇
  1997年   22篇
  1996年   13篇
  1995年   20篇
  1994年   20篇
  1993年   15篇
  1992年   14篇
  1991年   12篇
  1990年   16篇
  1989年   11篇
  1988年   8篇
  1987年   15篇
  1986年   9篇
  1985年   16篇
  1984年   15篇
  1983年   13篇
  1982年   15篇
  1981年   16篇
  1980年   9篇
  1979年   9篇
  1978年   9篇
  1977年   9篇
  1976年   6篇
  1975年   9篇
  1974年   6篇
  1973年   9篇
  1972年   6篇
排序方式: 共有1017条查询结果,搜索用时 15 毫秒
991.
Since European settlement, the Cann River in East Gippsland, Victoria has experienced a 700% increase in channel capacity, a 150-fold increase in the rate of lateral channel migration, a 45-fold increase in bankfull discharge and a 860-fold increase in annual sediment load. Over the last century, and primarily the last 40 years, channel incision has removed the equivalent of around 1500 years of floodplain deposition. A numerical floodplain evolution model is presented which suggests that under a best case scenario, infilling the incised channel trench will take 31,000 years and this is predicated on the full recovery of the immediate riparian vegetation and the in-channel loading of woody debris. The asymmetry in the recovery time following rapid channel change, compared with the original deposition of the material, is explained by a combination of the sediment-starved character of the catchment and the altered hydraulic conditions within the channel, principally associated with the role of woody debris. These factors have major implications for geomorphic recovery potential, constraining what can be realistically achieved in river rehabilitation.  相似文献   
992.
The Polymerase Chain Reaction (PCR) was employed to facilitategenetic analyses of Daphnia ephippial egg banks fromsediment sequences from lakes Windermere and Esthwaite in the English LakeDistrict, UK. We present a robust DNA extraction technique for resting eggs andan account of genetic characterisation of dated resting eggs from sedimentcores using both mitochondrial and nuclear DNA markers. We also providepreliminary results from genetic analysis of egg banks preserved in shortsediment cores. PCR was employed to facilitategenetic analyses of Daphnia ephippial egg banks collected from both lakes. Thelong-term environmental data available from lake records can provide a backdropagainst which molecular genetic-environmental interactions over time can beexamined, providing a technique for direct assessments of population responseto environmental change in paleolimnological studies of biodiversityhistory.  相似文献   
993.
Alluvial fans are relatively simple depositional systems, due to the direct coupling of sediment sources and adjacent accumulation areas. Nonetheless, general models of alluvial‐fan evolution and stratigraphy remain elusive, due to the great sensitivity of such systems to allogenic controls and their strongly case‐specific responses. Autogenic processes intrinsic to alluvial‐fan dynamics can complicate stratigraphic architectures, with effects not easily distinguishable from those of allogenic forcing. A distinction is made here between lateral autogenic dynamics, tied to spatial sediment distribution over fan surfaces, and vertical autogenic dynamics, related to independent incision‐aggradation cycles. Autogenic mechanisms have been highlighted recently by modelling studies, but remain poorly constrained in field‐based studies. Examples are presented here from the margins of the Cenozoic Teruel and Ebro basins (Spain), where alluvial fans accumulated thick successions during phases of basin topographic closure and endorheic drainage which promoted forced aggradation. Fan successions consist of conformable architectures of stacked clastic sheets, laterally continuous and with no evidence of internal unconformities, inset architectures, fan segmentation or preserved incised channels. Continuous aggradation in these closed basins strongly inhibited ‘vertical’ autogenic dynamics in the form of fan head and through fan incision, due to the forced rise in geomorphic base level and the creation of positive accommodation. Furthermore, the lack of incised channels favoured widespread sediment transport and aggradation over broad fan sectors in relatively short time spans, in contrast to the typical occurrence of active lobes and abandoned fan surfaces caused by ‘lateral’ autogenic dynamics. Stratigraphic records of alluvial fans developed in endorheic basins are essentially complete and largely unaffected by autogenic processes. The latter characteristic implies that they can be more unambiguously interpreted in terms of allogenic forcing, because stratigraphic signatures are not complicated by the effects of complex fan autodynamics.  相似文献   
994.
Geologic maps are a fundamental data source used to define mineral-resource potential tracts for the first step of a mineral resource assessment. Further, it is generally believed that the scale of the geologic map is a critical consideration. Previously published research has demonstrated that the U.S. Geological Survey porphyry tracts identified for the United States, which are based on 1:500,000-scale geology and larger scale data and published at 1:1,000,000 scale, can be approximated using a more generalized 1:2,500,000-scale geologic map. Comparison of the USGS porphyry tracts for the United States with weights-of-evidence models made using a 1:10,000,000-scale geologic map, which was made for petroleum applications, and a 1:35,000,000-scale geologic map, which was created as context for the distribution of porphyry deposits, demonstrates that, again, the USGS US porphyry tracts identified are similar to tracts defined on features from these small scale maps. In fact, the results using the 1:35,000,000-scale map show a slightly higher correlation with the USGS US tract definition, probably because the conceptual context for this small-scale map is more appropriate for porphyry tract definition than either of the other maps. This finding demonstrates that geologic maps are conceptual maps. The map information shown in each map is selected and generalized for the map to display the concepts deemed important for the map maker’s purpose. Some geologic maps of small scale prove to be useful for regional mineral-resource tract definition, despite the decrease in spatial accuracy with decreasing scale. The utility of a particular geologic map for a particular application is critically dependent on the alignment of the intention of the map maker with the application.  相似文献   
995.
Despite their direct links to human use, reservoirs are not widely utilised, relative to natural lakes, for deriving sediment histories. One explanation is the complex sedimentation patterns observed in water storages. Here a highly unusual combination of sedimentary records is used to determine the sedimentation history of Kangaroo Creek Reservoir, South Australia. We compare contiguous high resolution (0.5 cm sampling interval) diatom records from an almost 1.3 m core extracted from the bottom of the reservoir and from a 0.4 m monolith of sediment perched 15 m above the reservoir bottom on a disused bridge that was submerged following initial reservoir filling in 1970. The diatom histories are supplemented by evidence provided by other indicators, most notably radionuclide concentrations and ratios. Interestingly, despite the fact that the reservoir has been >20 m deep for more than 70% of its recorded history, distinct sections of the reservoir bottom core, but not the bridge monolith, are dominated by non-planktonic diatoms. We attribute the occurrences of these phases to inflows that occur following heavy catchment rains at times when the reservoir is drawn down. These characteristic sections have, in turn, been used to refine the site’s chronology. Despite having a length of almost 1.3 m, a variety of data suggests that the core has not recovered pre-reservoir sediment, but rather spans the period from 1981 (11 years after first filling) to 2001, when the core was extracted. It is clear, therefore, that sediments in the bottom of the reservoir are accumulating rapidly (>7 cm year−1), although more than 40% of this deposition occurs in less than 5% of the time. It appears that in the period 1996–2001, quiescent sedimentation rates, both in the perched bridge locality and on the reservoir bottom, slowed in response to reduced stream flow. Our findings indicate that, with caution, complex patterns of sedimentation in water storages can be disentangled. However, it was difficult to precisely correlate diatom sequences from the two records even in periods of quiescent sedimentation, suggesting that reservoir bottom diatom sequences should be interpreted with considerable caution. Furthermore, while storm-derived inflows such as those identified may deliver a substantial proportion of sediment and phosphorus load to storages, the ensuing deposition patterns may render much of the phosphorus unavailable to the overlying waters.  相似文献   
996.
997.
998.
Landscape connectivity: the geographic basis of geomorphic applications   总被引:7,自引:0,他引:7  
Geographic concerns for spatial relationships lie at the heart of geomorphic applications in environmental management. The way in which landscape compartments fit together in a catchment influences the operation of biophysical fluxes, and hence the ways in which disturbance responses are mediated over time. These relationships reflect the connectivity of the landscape. A nested hierarchical framework that emphasizes differing forms of (dis)connectivity in catchments is proposed. This field-based geomorphic tool can be used to ground the application of modelling techniques in analysis of catchment-scale biophysical fluxes.  相似文献   
999.
Understanding how sedimentary rocks represent time is one of the significant challenges in sedimentology. Sedimentation rates retrieved from vertical sections are strongly timescale dependent, which means that we cannot use empirical rate data derived from vertical sections in modern environments to interpret the temporal structure of ancient sedimentary deposits. We use the Lower to Middle Campanian Blackhawk Formation deposits in eastern Utah and western Colorado as a natural laboratory to test a source-to-sink methodology circumventing this timescale dependence by relating modern progradation rates to the deltaic shoreline progradation of ancient siliciclastic rocks. Our objective is to quantify how much time is needed to account for the observed cumulative deltaic shoreline progradation recorded by the shallow-marine sandstone bodies of the Blackhawk Formation in terms of progradation rates derived from comparable modern deltaic systems. By making the simplifying assumption that the Blackhawk Formation rocks were deposited along a linear coastline that only grew by aggradation and progradation, it is possible to argue that the stratigraphic completeness of two-dimensional dip-oriented stratigraphic cross-sections through these deposits should be high. Furthermore, we hypothesise that delta progradation estimates capture a significant portion of the biostratigraphically and radiometrically constrained duration of the succession. By comparing the recorded progradation with modern progradation rates, we estimate that we need ca. 20% (median value, with minimum and maximum estimates of 2% and 300%) of the time available from biostratigraphic and radiometric dating to account for the progradation recorded by the sedimentary deposits. This indicates that long-term progradation rates averaged over the entire duration of the Blackhawk Formation were only a factor of five times slower than the modern progradation rates derived from observations over periods that are five to six orders of magnitude shorter. We conclude that a significant amount of time is represented by prograding deltaic shoreline deposits and that by considering the cumulative shoreline progradation, we could limit the effects of timescale dependence on the rate estimates used in our analysis.  相似文献   
1000.
The Upper Devonian Rhinestreet black shale of the western New York state region of the Appalachian Basin has experienced multiple episodes of overpressure generation manifested by at least two sets of natural hydraulic fractures. These overpressure events were thermal in origin and induced by the generation of hydrocarbons during the Alleghanian orogeny close to or at the Rhinestreet's ~3.1 km maximum burial depth. Analysis of differential gravitational compaction strain of the organic‐rich shale around embedded carbonate concretions that formed within a metre or so of the seafloor indicates that the Rhinestreet shale was compacted ~58%. Compaction strain was recalculated to a palaeoporosity of 37.8%, in excess of that expected for burial >3 km. The palaeoporosity of the Rhinestreet shale suggests that porosity reduction caused by normal gravitational compaction of the low‐permeability carbonaceous sediment was arrested at some depth shy of its maximum burial depth by pore pressure in excess of hydrostatic. The depth at which the Rhinestreet shale became overpressured, the palaeo‐fluid retention depth, was estimated by use of published normal compaction curves and empirical porosity‐depth algorithms to fall between 850 and 1380 m. Early and relatively shallow overpressuring of the Rhinestreet shale likely originated by disequilibrium compaction induced by a marked increase in sedimentation rate in the latter half of the Famennian stage (Late Devonian) as the Catskill Delta Complex prograded westward across the Appalachian Basin in response to Acadian tectonics. The regional Upper Devonian stratigraphy of western New York state indicates that the onset of overpressure occurred at a depth of ~1100 m, well in advance of the Rhinestreet shale's entry into the oil window during the Alleghanian orogeny.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号