首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   15篇
  国内免费   3篇
测绘学   3篇
大气科学   18篇
地球物理   94篇
地质学   92篇
海洋学   17篇
天文学   52篇
综合类   3篇
自然地理   23篇
  2024年   2篇
  2022年   2篇
  2021年   8篇
  2020年   3篇
  2019年   2篇
  2018年   15篇
  2017年   7篇
  2016年   8篇
  2015年   12篇
  2014年   11篇
  2013年   13篇
  2012年   12篇
  2011年   26篇
  2010年   26篇
  2009年   19篇
  2008年   18篇
  2007年   25篇
  2006年   16篇
  2005年   10篇
  2004年   11篇
  2003年   10篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1988年   3篇
  1987年   1篇
  1985年   4篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有302条查询结果,搜索用时 109 毫秒
111.
Abstract— We present the first hydrocode simulations of the formation of the Sierra Madera structure (west Texas, USA), which was caused by an impact into a thick sedimentary target sequence. We modeled Sierra Madera using the iSALE hydrocode, and here we present two best‐fit models: 1) a crater with a rim (final crater) diameter of ?12 km, in agreement with previous authors' interpretations of the original structure, and 2) a crater ?16 km in diameter with increased postimpact erosion. Both models fit some of the geologic observational data, but discrepancies with estimates of peak shock pressure, extent of deformation, and stratigraphic displacement remain. This study suggests that Sierra Madera may be a larger crater than previously reported and illustrates some of the challenges in simulating impact deformation of sedimentary lithologies. As many terrestrial craters possess some amount of sedimentary rocks in the target sequence, numerical models of impacts into sedimentary targets are essential to our understanding of target rock deformation and the mechanics of crater formation.  相似文献   
112.
Late Quaternary, porphyritic basalts erupted in the Kaikohe-Bay of Islands area, New Zealand, provide an opportunity to explore the crystallization and ascent history of small volume magmas in an intra-continental monogenetic volcano field. The plagioclase phenocrysts represent a diverse crystal cargo. Most of the crystals have a rim growth that is compositionally similar to groundmass plagioclase (~?An65) and is in equilibrium with the host basalt rock. The rims surround a resorbed core that is either less calcic (~?An20–45) or more calcic (>?An70), having crystallized in more differentiated or more primitive melts, respectively. The relic cores, particularly those that are less calcic (<?~?An45), have 87Sr/86Sr ratios that are either mantle-like (~?0.7030) or crustal-like (~?0.7040 to 0.7060), indicating some are antecrysts formed in melts fractionated from plutonic basaltic forerunners, while others are true xenocrysts from greywacke basement and/or Miocene arc volcanics. It is envisaged that intrusive basaltic forerunners produced a zone where various degrees of crustal assimilation and fractional crystallization occurred. The erupted basalts represent mafic recharge of this system, as indicated by the final crystal rim growths around the entrained antecrystic and xenocrystic cargo. The recharge also entrained cognate gabbros that occur as inclusions, and produced mingled groundmasses. Multi-stage magmatic ascent and interaction is indicated, and is consistent with the presence of a partial melt body in the lower crust detected by geophysical methods. This crystallization history contrasts with traditional concepts of low-flux basaltic systems where rapid ascent from the mantle is inferred. From a hazards perspective, the magmatic system inferred here increases the likelihood of detecting eruption precursor phenomena such as seismicity, degassing and surface deformation.  相似文献   
113.
There is a no lack of significant open questions in the field of hydrology. How will hydrological connectivity between freshwater bodies be altered by future human alterations to the hydrological cycle? Where does water go when it rains? Or what is the future space–time variability of flood and drought events? However, the answers to these questions will vary with location due to the specific and often poorly understood local boundary conditions and system properties that control the functional behaviour of a catchment or any other hydrologic control volume. We suggest that an open, shared and evolving perceptual model of a region's hydrology is critical to tailor our science questions, as it would be for any other study domain from the plot to the continental scale. In this opinion piece, we begin to discuss the elements of and point out some knowledge gaps in the perceptual model of the terrestrial water cycle of Great Britain. We discuss six major knowledge gaps and propose four key ways to reduce them. While the specific knowledge gaps in our perceptual model do not necessarily transfer to other places, we believe that the development of such perceptual models should be at the core of the debate for all hydrologic communities, and we encourage others to have a similar debate for their hydrologic domain.  相似文献   
114.
This paper presents the results of field geophysical testing and laboratory testing of peat from Carn Park and Roosky raised bogs in the Irish Midlands. The motivation for the work was highlight the importance of these areas and to begin to attempt to understand the reasons for the failure of the bogs despite them having surface slopes of some 1°. It was found that the peat is typical of that of Irish raised bogs being up to 8 m thick towards the “high” dome of the bogs. The peat is characterised by low density, high water content, high organic content, low undrained shear strength and high compressibility. The peat is also relatively permeable at in situ stress. Geophysical electrical resistivity tomography and ground penetrating radar data shows a clear thinning of the peat in the area of the failures corresponding to a reduction in volume from dewatering by edge drains/peat harvesting. This finding is supported by detailed water content measurements. It was also shown that the peat base topography is relatively flat and indicates that the observed surface movement has come from within the peat rather than from the material below the peat. Potential causes of the failures include conventional slope instability, the effect of seepage forces or the release of built-up gas in the peat mass. Further measurements are required in order to study these in more detail.  相似文献   
115.
Collisions between planetesimals were common during the first approximately 100 Myr of solar system formation. Such collisions have been suggested to be responsible for thermal processing seen in some meteorites, although previous work has demonstrated that such events could not be responsible for the global thermal evolution of a meteorite parent body. At this early epoch in solar system history, however, meteorite parent bodies would have been heated or retained heat from the decay of short‐lived radionuclides, most notably 26Al. The postimpact structure of an impacted body is shown here to be a strong function of the internal temperature structure of the target body. We calculate the temperature–time history of all mass in these impacted bodies, accounting for their heating in an onion‐shell–structured body prior to the collision event and then allowing for the postimpact thermal evolution as heat from both radioactivities and the impact is diffused through the resulting planetesimal and radiated to space. The thermal histories of materials in these bodies are compared with what they would be in an unimpacted, onion‐shell body. We find that while collisions in the early solar system led to the heating of a target body around the point of impact, a greater amount of mass had its cooling rates accelerated as a result of the flow of heated materials to the surface during the cratering event.  相似文献   
116.
The fate of the impactor is an important aspect of the impact‐cratering process. Defining impactor material as surviving if it remains solid (i.e., does not melt or vaporize) during crater formation, previous numerical modeling and experiments have shown that survivability decreases with increasing impact velocity, impact angle (with respect to the horizontal), and target density. Here, we show that in addition to these, impactor survivability depends on the porosity and shape of the impactor. Increasing impactor porosity decreases impactor survivability, while prolate‐shaped (polar axis > equatorial axis) impactors survive impact more so than spherical and oblate‐shaped (polar axis < equatorial axis) impactors. These results are used to produce a relatively simple equation, which can be used to estimate the impactor fraction shocked to a given pressure as a function of these parameters. By applying our findings to the Morokweng crater‐forming impact, we suggest impact scenarios that explain the high meteoritic content and presence of unmolten fossil meteorites within the Morokweng crater. In addition to previous suggestions of a low‐velocity and/or high‐angled impact, this work suggests that an elongated and/or low porosity impactor may also help explain the anomalously high survivability of the Morokweng impactor.  相似文献   
117.
The morphology of impact craters on the icy Galilean satellites differs from craters on rocky bodies. The differences are thought due to the relative weakness of ice and the possible presence of sub-surface water layers. Digital elevation models constructed from Galileo images were used to measure a range of dimensions of craters on the dark and bright terrains of Ganymede. Measurements were made from multiple profiles across each crater, so that natural variation in crater dimensions could be assessed and averaged scaling trends constructed. The additional depth, slope and volume information reported in this work has enabled study of central peak formation and development, and allowed a quantitative assessment of the various theories for central pit formation. We note a possible difference in the size-morphology progression between small craters on icy and silicate bodies, where central peaks occur in small craters before there is any slumping of the crater rim, which is the opposite to the observed sequence on the Moon. Conversely, our crater dimension analyses suggest that the size-morphology progression of large lunar craters from central peak to peak-ring is mirrored on Ganymede, but that the peak-ring is subsequently modified to a central pit morphology. Pit formation may occur via the collapse of surface material into a void left by the gradual release of impact-induced volatiles or the drainage of impact melt into sub-crater fractures.  相似文献   
118.
We obtained U–Th disequilibrium age data on zircons from each of the four rhyolite eruptions that built Tarawera volcano in the last 22 ka within the Okataina Volcanic Center (OVC), caldera, New Zealand. Secondary ion mass spectrometry analyses on unpolished euhedral crystal faces that lack resorption features show that crystal growth variously terminated from near-eruption age to ~100 ka prior to eruption. Age-depth profiling of crystals reveals long periods of continuous (~34 ka) and discontinuous growth (~90 ka). Growth hiatuses of up to ~40 ka duration occur, but do not all relate to obvious resorption surfaces. Age differences up to similar magnitude are found on opposing faces of some crystals suggesting episodes of partial exposure to melts. These features are best explained by periodic, complete, or partial, sub-solidus storage and/or inclusion in larger crystal phases, followed by rapid liberation prior to eruption. This is supported by high abundances of U and Th (~500 − >2,000 ppm) in some zircons consistent with periods of high crystallinity (>70%) in the magmatic system, based on crystal/melt partitioning. Contemporaneous but contrasting rim-ward trends of these elements within crystals, even in the same lava hand sample, require synchronous growth in separate melt bodies and little connectivity within the system, but also significant crystal transport and mixing prior to eruption. Many crystals record continuity of growth through the preceding ~60 ka OVC caldera-collapse and subsequent eruptions from Tarawera. This demonstrates a decoupling between eruption triggers, such as shallow crustal extension and mafic intrusion, and the crystallization state of the OVC silicic magmatic system. The data highlights the need to distinguish between the time for accumulation of eruptible magma and the long-term magma residence time based on the age of crystals with high closure temperatures, when assessing the potential for catastrophic eruptions.  相似文献   
119.
120.
The persistent activity of Yasur volcano, a post-caldera scoria cone in the southern Vanuatu Arc, along with the uniformity exhibited by its eruptive products, indicates that it is a “steady-state” volcano. This implies that rates of magma replenishment and tapping are in equilibrium. Examination of recently exposed tephra sequences suggests that Strombolian-style activity at Yasur has persisted in its current form for the last 630–850 years. Eruption of tephra with uniform grain size and texture throughout this period indicates invariant eruption magnitude and style. Based on tephra accumulation rates, a uniform, time-averaged eruption flux of ~410–480 m3 days?1 is estimated. Major and trace element analyses of glass shards and mineral grains from these tephra deposits show limited variation in magma composition throughout that time, consistent with a chemically buffered magma reservoir and models for steady-state volcanism. Similarly, mineral crystallisation temperature estimates are within error, suggesting the magma reservoir has retained a constant temperature through this time, while pressure estimates suggest shallow crystallisation. Eruptions appear to be driven by gas release, with small fluctuations in magma chemistry and eruptive behaviour governed by perturbations in volatile flux. This period of steady-state activity was preceded by ~600 years of higher-magnitude, lower-frequency eruptions during which less evolved compositions were erupted. Variation between these two styles of eruptive behaviour may be explained by a shift from a periodically closed to fully opened conduit, allowing more regular magma release and changes to degassing regimes. New radiocarbon ages suggest a period of irregular eruptive behaviour extending >1,400 year B.P. Overall, a transition from an irregular to a very steady magmatic system has occurred over the past ~2 kyr. Previously determined tectonic indicators for caldera resurgence in the area suggest revived magma replenishment after a hiatus following the caldera-forming Siwi eruption. This replenishment, while now supplying today’s constant activity, has not yet manifested itself in variations in composition or style/magnitude of eruptions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号