首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   15篇
  国内免费   3篇
测绘学   3篇
大气科学   18篇
地球物理   94篇
地质学   92篇
海洋学   17篇
天文学   52篇
综合类   3篇
自然地理   23篇
  2024年   2篇
  2022年   2篇
  2021年   8篇
  2020年   3篇
  2019年   2篇
  2018年   15篇
  2017年   7篇
  2016年   8篇
  2015年   12篇
  2014年   11篇
  2013年   13篇
  2012年   12篇
  2011年   26篇
  2010年   26篇
  2009年   19篇
  2008年   18篇
  2007年   25篇
  2006年   16篇
  2005年   10篇
  2004年   11篇
  2003年   10篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1988年   3篇
  1987年   1篇
  1985年   4篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有302条查询结果,搜索用时 31 毫秒
101.
This paper presents the current progress of the River Level Monitoring using GPS Heighting (RiGHt) project. The aim of the project is to develop an integrated system to allow the continuous monitoring of river heights using a buoy equipped with Global Positioning System (GPS) and satellite communications and using Geographical Information System (GIS) techniques. ? 2000 John Wiley & Sons, Inc.  相似文献   
102.
103.
104.
Collisions between planetesimals in the early solar system were a common and fundamental process. Most collisions occurred at an oblique incidence angle, yet the influence of impact angle on heating in collisions is not fully understood. We have conducted a series of shock physics simulations to quantify oblique heating processes, and find that both impact angle and target curvature are important in quantifying the amount of heating in a collision. We find an expression to estimate the heating in an oblique collision compared to that in a vertical incidence collision. We have used this expression to quantify heating in the Rhealsilvia‐forming impact on Vesta, and find that there is slightly more heating in a 45° impact than in a vertical impact. Finally, we apply these results to Monte Carlo simulations of collisional processes in the early solar system, and determine the overall effect of impact obliquity from the range of impacts that occurred on a meteorite parent body. For those bodies that survived 100 Myr without disruption, it is not necessary to account for the natural variation in impact angle, as the amount of heating was well approximated by a fixed impact angle of 45°. However, for disruptive impacts, this natural variation in impact angle should be accounted for, as around a quarter of bodies were globally heated by at least 100 K in a variable‐angle model, an order of magnitude higher than under an assumption of a fixed angle of 45°.  相似文献   
105.
We investigate the relationship between the optical and radio emission of active galactic nuclei (AGN) by analysing optical and 15+22+43 GHz Very Long Baseline Array (VLBA) polarization observations simultaneous to within a day for 11 BL Lacertae (BL Lac) objects and the blazar 3C279. We have determined and corrected for the Faraday rotation measures in the very long baseline interferometry (VLBI) cores, enabling us to compare the intrinsic (zero-wavelength) VLBI-core polarization angles and the optical polarization angles χopt. A clear alignment between these two angles emerges in the transition toward higher radio frequencies, and a prominent peak at 0° is visible in the distribution of |χopt−χ43 GHz|. This correlation implies that the magnetic-field orientations in the regions giving rise to the optical and radio polarization are the same, and can be easily understood if the radio and optical polarization are roughly cospatial. It is difficult to rule out the possibility that they arise in different regions in a straight jet with a uniform magnetic-field structure, but this seems less likely, since the VLBI jets of AGN are often bent on parsec-scales. This may suggest that much or all of the strong optical polarization in these sources arises in the inner radio jets, possibly associated with the formation and emergence of compact new VLBI components.  相似文献   
106.
Abstract— We present the first hydrocode simulations of the formation of the Sierra Madera structure (west Texas, USA), which was caused by an impact into a thick sedimentary target sequence. We modeled Sierra Madera using the iSALE hydrocode, and here we present two best‐fit models: 1) a crater with a rim (final crater) diameter of ?12 km, in agreement with previous authors' interpretations of the original structure, and 2) a crater ?16 km in diameter with increased postimpact erosion. Both models fit some of the geologic observational data, but discrepancies with estimates of peak shock pressure, extent of deformation, and stratigraphic displacement remain. This study suggests that Sierra Madera may be a larger crater than previously reported and illustrates some of the challenges in simulating impact deformation of sedimentary lithologies. As many terrestrial craters possess some amount of sedimentary rocks in the target sequence, numerical models of impacts into sedimentary targets are essential to our understanding of target rock deformation and the mechanics of crater formation.  相似文献   
107.
Late Quaternary, porphyritic basalts erupted in the Kaikohe-Bay of Islands area, New Zealand, provide an opportunity to explore the crystallization and ascent history of small volume magmas in an intra-continental monogenetic volcano field. The plagioclase phenocrysts represent a diverse crystal cargo. Most of the crystals have a rim growth that is compositionally similar to groundmass plagioclase (~?An65) and is in equilibrium with the host basalt rock. The rims surround a resorbed core that is either less calcic (~?An20–45) or more calcic (>?An70), having crystallized in more differentiated or more primitive melts, respectively. The relic cores, particularly those that are less calcic (<?~?An45), have 87Sr/86Sr ratios that are either mantle-like (~?0.7030) or crustal-like (~?0.7040 to 0.7060), indicating some are antecrysts formed in melts fractionated from plutonic basaltic forerunners, while others are true xenocrysts from greywacke basement and/or Miocene arc volcanics. It is envisaged that intrusive basaltic forerunners produced a zone where various degrees of crustal assimilation and fractional crystallization occurred. The erupted basalts represent mafic recharge of this system, as indicated by the final crystal rim growths around the entrained antecrystic and xenocrystic cargo. The recharge also entrained cognate gabbros that occur as inclusions, and produced mingled groundmasses. Multi-stage magmatic ascent and interaction is indicated, and is consistent with the presence of a partial melt body in the lower crust detected by geophysical methods. This crystallization history contrasts with traditional concepts of low-flux basaltic systems where rapid ascent from the mantle is inferred. From a hazards perspective, the magmatic system inferred here increases the likelihood of detecting eruption precursor phenomena such as seismicity, degassing and surface deformation.  相似文献   
108.
There is a no lack of significant open questions in the field of hydrology. How will hydrological connectivity between freshwater bodies be altered by future human alterations to the hydrological cycle? Where does water go when it rains? Or what is the future space–time variability of flood and drought events? However, the answers to these questions will vary with location due to the specific and often poorly understood local boundary conditions and system properties that control the functional behaviour of a catchment or any other hydrologic control volume. We suggest that an open, shared and evolving perceptual model of a region's hydrology is critical to tailor our science questions, as it would be for any other study domain from the plot to the continental scale. In this opinion piece, we begin to discuss the elements of and point out some knowledge gaps in the perceptual model of the terrestrial water cycle of Great Britain. We discuss six major knowledge gaps and propose four key ways to reduce them. While the specific knowledge gaps in our perceptual model do not necessarily transfer to other places, we believe that the development of such perceptual models should be at the core of the debate for all hydrologic communities, and we encourage others to have a similar debate for their hydrologic domain.  相似文献   
109.
This paper presents the results of field geophysical testing and laboratory testing of peat from Carn Park and Roosky raised bogs in the Irish Midlands. The motivation for the work was highlight the importance of these areas and to begin to attempt to understand the reasons for the failure of the bogs despite them having surface slopes of some 1°. It was found that the peat is typical of that of Irish raised bogs being up to 8 m thick towards the “high” dome of the bogs. The peat is characterised by low density, high water content, high organic content, low undrained shear strength and high compressibility. The peat is also relatively permeable at in situ stress. Geophysical electrical resistivity tomography and ground penetrating radar data shows a clear thinning of the peat in the area of the failures corresponding to a reduction in volume from dewatering by edge drains/peat harvesting. This finding is supported by detailed water content measurements. It was also shown that the peat base topography is relatively flat and indicates that the observed surface movement has come from within the peat rather than from the material below the peat. Potential causes of the failures include conventional slope instability, the effect of seepage forces or the release of built-up gas in the peat mass. Further measurements are required in order to study these in more detail.  相似文献   
110.
Collisions between planetesimals were common during the first approximately 100 Myr of solar system formation. Such collisions have been suggested to be responsible for thermal processing seen in some meteorites, although previous work has demonstrated that such events could not be responsible for the global thermal evolution of a meteorite parent body. At this early epoch in solar system history, however, meteorite parent bodies would have been heated or retained heat from the decay of short‐lived radionuclides, most notably 26Al. The postimpact structure of an impacted body is shown here to be a strong function of the internal temperature structure of the target body. We calculate the temperature–time history of all mass in these impacted bodies, accounting for their heating in an onion‐shell–structured body prior to the collision event and then allowing for the postimpact thermal evolution as heat from both radioactivities and the impact is diffused through the resulting planetesimal and radiated to space. The thermal histories of materials in these bodies are compared with what they would be in an unimpacted, onion‐shell body. We find that while collisions in the early solar system led to the heating of a target body around the point of impact, a greater amount of mass had its cooling rates accelerated as a result of the flow of heated materials to the surface during the cratering event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号