首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   11篇
  国内免费   2篇
测绘学   1篇
大气科学   21篇
地球物理   103篇
地质学   44篇
海洋学   12篇
天文学   35篇
综合类   3篇
自然地理   12篇
  2024年   2篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   11篇
  2017年   7篇
  2016年   5篇
  2015年   6篇
  2014年   7篇
  2013年   9篇
  2012年   6篇
  2011年   17篇
  2010年   17篇
  2009年   8篇
  2008年   6篇
  2007年   16篇
  2006年   7篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1988年   6篇
  1985年   5篇
  1983年   3篇
  1980年   2篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   4篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1966年   3篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1960年   1篇
  1957年   1篇
排序方式: 共有231条查询结果,搜索用时 78 毫秒
61.
62.
Summary The theory of methods of computing single- and inter-station transfer functions in both the spectral and time domains was developed in paper[1]. Both approaches are applied to the variation data recorded at field stations along two non-simultaneous profiles traversing the eastern margin of the Bohemian Massif, where a zone of anomalous induction seems to mark an important geological boundary of formations with different histories of development. The results of both analyses are found to coincide within reasonable bounds of 20–30% in the principal induction characteristics.
u m¶rt; ama ¶rt;-u -mau n¶rt;am u nma u am a ua am[1]. am nua m am a n¶rt;¶rt;a nu ¶rt; aaua ¶rt;aaum auau aumua a n mau ¶rt; u nu, nau m au aua,¶rt; aa a aa u¶rt;uu. a, u¶rt;u, mamau a¶rt;a ¶rt; ¶rt; ¶rt;uuau au umuu aumu. mam aau nma u am auam a 20–30% ¶rt; u¶rt;u naam.
  相似文献   
63.
Summary The magnetic moments of Uranus and Neptune have been predicted using different scaling laws of planetary magnetism. The predictions for Uranus cover a broad band of values from very weak magnetic fields (tidal relations) to moderate fields (thermal convection hypothesis). Therefore, the direct measurements of this field by Voyager 2 (January 1986) will be very important for testing the individual hapotheses.
a m ama a ¶rt; amua nam ¶rt;a n aum m nam a a nm. aa n¶rt;nmu nuu mu, ¶rt;m u¶rt;am a aum n a nmu aa u u a nmu nma.


Presented at the Fifth Scientific Assembly of IAGA in Prague 1985.  相似文献   
64.
65.
66.
Asteroids and comets 10–100 m in size that collide with Earth disrupt dramatically in the atmosphere with an explosive transfer of energy, caused by extreme air drag. Such airbursts produce a strong blastwave that radiates from the meteoroid's trajectory and can cause damage on the surface. An established technique for predicting airburst blastwave damage is to treat the airburst as a static source of energy and to extrapolate empirical results of nuclear explosion tests using an energy‐based scaling approach. Here we compare this approach to two more complex models using the iSALE shock physics code. We consider a moving‐source airburst model where the meteoroid's energy is partitioned as two‐thirds internal energy and one‐third kinetic energy at the burst altitude, and a model in which energy is deposited into the atmosphere along the meteoroid's trajectory based on the pancake model of meteoroid disruption. To justify use of the pancake model, we show that it provides a good fit to the inferred energy release of the 2013 Chelyabinsk fireball. Predicted overpressures from all three models are broadly consistent at radial distances from ground zero that exceed three times the burst height. At smaller radial distances, the moving‐source model predicts overpressures two times greater than the static‐source model, whereas the cylindrical line‐source model based on the pancake model predicts overpressures two times lower than the static‐source model. Given other uncertainties associated with airblast damage predictions, the static‐source approach provides an adequate approximation of the azimuthally averaged airblast for probabilistic hazard assessment.  相似文献   
67.
68.
Extracting true amplitude versus angle common image gathers is one of the key objectives in seismic processing and imaging. This is achievable to different degrees using different migration techniques (e.g., Kirchhoff, wavefield extrapolation, and reverse time migration techniques) and is a common tool in exploration, but the costs can vary depending on the selected migration algorithm and the desired accuracy. Here, we investigate the possibility of combining the local‐shift imaging condition, specifically the time‐shift extended imaging condition, for angle gathers with a Kirchhoff migration. The aims are not to replace the more accurate full‐wavefield migration but to offer a cheaper alternative where ray‐based methods are applicable and to use Kirchhoff time‐lag common image gathers to help bridge the gap between the traditional offset common image gathers and reverse time migration angle gathers; finally, given the higher level of summation inside the extended imaging migration, we wish to understand the impact on the amplitude versus angle response. The implementation of the time‐shift imaging condition along with the computational cost is discussed, and results of four different datasets are presented. The four example datasets, two synthetic, one land acquisition, and a marine dataset, have been migrated using a Kirchhoff offset method, a Kirchhoff time‐shift method, and, for comparison, a reverse time migration algorithm. The results show that the time‐shift imaging condition at zero time lag is equivalent to the full offset stack as expected. The output gathers are cleaner and more consistent in the time‐lag‐derived angle gathers, but the conversion from time lag to angle can be considered a post‐processing step. The main difference arises in the amplitude versus offset/angle distribution where the responses are different and dramatically so for the land data. The results from the synthetics and real data show that a Kirchhoff migration with an extended imaging condition is capable of generating subsurface angle gathers. The same disadvantages with a ray‐based approach will apply using the extended imaging condition relative to a wave equation angle gather solution. Nevertheless, using this approach allows one to explore the relationship between the velocity model and focusing of the reflected energy, to use the Radon transformation to remove noise and multiples, and to generate consistent products from a ray‐based migration and a full‐wave equation migration, which can then be interchanged depending on the process under study.  相似文献   
69.
Mass exchange between debris flow and the bed plays a vital role in debris flow dynamics. Here a depth‐averaged two‐phase model is proposed for debris flows over erodible beds. Compared to previous depth‐averaged two‐phase models, the present model features a physical step forward by explicitly incorporating the mass exchange between the flow and the bed. A widely used closure model in fluvial hydraulics is employed to estimate the mass exchange between the debris flow and the bed, and an existing relationship for bed entrainment rate is introduced for comparison. Also, two distinct closure models for the bed shear stresses are evaluated. One uses the Coulomb friction law and Manning's equation to determine the solid and fluid resistances respectively, while the other employs an analytically derived formula for the solid phase and the mixing length approach for the fluid phase. A well‐balanced numerical algorithm is applied to solve the governing equations of the model. The present model is first shown to reproduce average sediment concentrations in steady and uniform debris flows over saturated bed as compared to an existing formula underpinned by experimental datasets. Then, it is demonstrated to perform rather well as compared to the full set of USGS large‐scale experimental debris flows over erodible beds, in producing debris flow depth, front location and bed deformation. The effects of initial conditions on debris flow mass and momentum gain are resolved by the present model, which explicitly demonstrates the roles of the wetness, porosity and volume of bed sediments in affecting the flow. By virtue of extended modeling cases, the present model produces debris flow efficiency that, as revealed by existing observations and empirical relations, increases with initial volume, which is enhanced by mass gain from the bed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
70.
The Merensky Reef hosts one of the largest PGE resources globally.It has been exploited for nearly 100 years, yet its origin remains unresolved.In the present study, we characterised eight samples of the reef at four localities in the western Bushveld Complex using micro-X-ray fluorescence and field emission scanning electron microscopy.Our results indicate that the Merensky Reef formed through a range of diverse processes.Textures exhibited by chromite grains at the base of the reef are consistent with supercooling and in situ growth.The local thickening of the Merensky chromitite layers within troughs in the floor rocks is most readily explained by granular flow.Annealing and deformation textures in pyroxenes of the Merensky pegmatoid bear testament to recrystallisation and deformation.The footwall rocks to the reef contain disseminations of PGE rich sulphides as well as olivine grains with peritectic reaction rims along their upper margins suggesting reactive downward flow of silicate and sulphide melts.Olivine-hosted melt inclusions containing Cl-rich apatite, sodic plagioclase, and phlogopite suggest the presence of highly evolved, volatile-rich melts.Pervasive reverse zonation of cumulus plagioclase in the footwall of the reef indicates dissolution or partial melting of plagioclase, possibly triggered by flux of heat, acidic fluids, or hydrous melt.Together, these data suggest that the reef formed through a combination of magmatic, hydrodynamic and hydromagmatic processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号