首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
  国内免费   2篇
测绘学   2篇
大气科学   6篇
地球物理   6篇
地质学   10篇
海洋学   5篇
自然地理   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1987年   1篇
  1982年   1篇
排序方式: 共有31条查询结果,搜索用时 0 毫秒
11.
This study aimed to establish the effects of waterlogging, salinity and light on the early development of mangroves. Seedlings of Bruguiera gymnorrhiza (L.) Lamk. and Heritiera littoralis Dryand were exposed to 12 weeks of waterlogging, during which time growth and photosynthesis were measured every two weeks. The salinity of the water inundation ranged from fresh water to full-strength sea water (salinity 35). Seedlings were exposed to either full sunlight of 1 500 µmol photon m–2 s–1 (SD 397) at midday or shade conditions of 325 µmol photon m–2 s–1 (SD 40) of light at midday, to explore whether the plants would be differently affected by prolonged waterlogging in increased salinities and under different light conditions. Heritiera littoralis was more sensitive to waterlogging, salinity and light, displaying a least relative growth rate of 0.127 g g–1 week–1 (SE 0.032) under shade, and 0.025 g g–1 week–1 (SE 0.021) in full light; while under shade, photosynthesis continued only in fresh water, but photosynthetic yield decreased from 0.7 to 0.4 with increasing duration of waterlogging. By 12 weeks, all H. littoralis seedlings treated with any saltwater mixture had died. Bruguiera gymnorrhiza seedlings maintained a moderate rate of photosynthesis throughout inundation in both shade and full light, with yields of 0.7 and 0.3, respectively. Furthermore, B. gymnorrhiza survived waterlogging in up to 66% seawater, and maintained comparable relative growth rates of 0.164 g g–1 week–1 (SE 0.066) with 0.083 g g–1 week–1 (SE 0.065) and 0.074 g g–1 week–1 (SE 0.036) with 0.052 g g–1 week–1 (SE 0.037) under shade and in full light between fresh water and the highest salinity conditions, respectively. These results suggest that B. gymnorrhiza is broadly tolerant, making it a potential candidate species for restoring vulnerable mangrove forests.  相似文献   
12.
Northern Ireland has a tradition of peat cutting; 78 per cent by area of remaining lowland bogs and 46 per cent of blanket bogs have been cut in the past. Since the early 1980s, machine peat extraction for fuel and horticulture has increased, against a background of changing economic support for agriculture, high rural unemployment and agricultural underemployment. Cutting fuel peat can reduce household fuel costs and some peat fuel is sold to gain income. Horticultural peat is cut mainly for sale. Expansion of machine extraction, with possible environmental impacts, occurred as interest in peatland conservation increased. Potential conflict arises between local economic needs and conservation. Machine cutting for fuel is widespread, but affects only 2.6 per cent of the blanket peat area; horticultural extraction is more localized and is only one-fifth of the extent of fuel extraction. Altitude, distance from roads, land ownership and rights, turbary, religious affiliation, local economic needs and the role of government departments all contribute to explaining the distribution and extent of extraction.  相似文献   
13.
We undertook the first measurements of metabolic Cu requirements (net Cu:C assimilation ratios) and steady-state Cu uptake rates (ρCuss) of natural plankton assemblages in the northeast subarctic Pacific using the short-lived radioisotope 67Cu. Size-fractionated net Cu:C assimilation ratios varied ~3 fold (1.35–4.21 μmol Cu mol C?1) among the stations along Line P, from high Fe coastal waters to the Fe-limited open ocean. The variability in Cu:C was comparable to biogenic Fe:C ratios in this region. As previously observed for Fe uptake, the bacterial size class accounted for half of the total particulate ρCuss. Interestingly, carbon biomass-normalized rates of Fe uptake from the siderophore desferrioxamine B (DFB) (ρFeDFB; a physiological proxy for Fe-limitation) by the >20 μm size class were positively correlated with the intracellular net Cu:C assimilation ratios in this size class, suggesting that intracellular Cu requirements for large phytoplankton respond to increased Fe-limitation. At Fe-limited Ocean Station Papa (OSP), we performed short-term Cu uptake (ρCuL) assays to determine the relative bioavailability of Cu bound to natural and synthetic ligands. Like the volumetric ρCuss measured along Line P, the bacterial size class was responsible for at least 50% of the total ρCuL. Uptake rates of Cu from the various organic complexes suggest that Cu uptake was controlled by the oxidation state of the metal and by the metal:ligand concentration ratio, rather than the concentration of inorganic species of Cu in solution. Collectively, these data suggest that Cu likely plays an important role in the physiology of natural plankton communities beyond the toxicological effects studied previously.  相似文献   
14.
The Storø greenstone belt, southern West Greenland, consists of thrust-imbricated slices of Mesoarchean (>3060 Ma) and Neoarchean (ca. 2800 Ma) mafic to ultramafic volcanic rocks, volcaniclastic sediments, and gabbro–anorthosite associations. The belt underwent polyphase metamorphism at upper amphibolite facies conditions between 2650 and 2600 Ma. The contacts between the Mesoarchean and Neoarchean volcanic rocks, and surrounding Eoarchean to Neoarchean tonalite–trondhjemite–granodiorite (TTG) gneisses are tectonic and typically bounded by high-grade mylonites. Regardless of age, the volcanic rocks are dominated by mafic amphibolites with a tholeiitic basalt composition, near-flat to slightly enriched light rare earth element (LREE) patterns (La/Smcn = 0.91–1.48), relatively flat to slightly depleted heavy-REE (HREE) (Gd/Ybcn = 1.0–1.28), and pronounced negative Nb–Ta anomalies (Nb/Nb* = 0.34–0.73) on chondrite- and primitive mantle-normalized diagrams. These geochemical characteristics are consistent with subduction zone geochemical signatures and partial melting of a shallow (<80 km) mantle source free of residual garnet. There is no geochemical evidence for contamination by older continental crust. The overall field and geochemical characteristics suggest that the thrust-imbricated basaltic rocks were erupted in intra-oceanic subduction zone settings. Sedimentary rocks are represented by garnet–biotite and quartzitic gneisses. They are characterized by relatively high contents of transition metal (Ni = 10–154 ppm; Cr = 7–166 ppm) and enriched LREE patterns (La/Smcn = 1.38–3.79). These geochemical characteristics suggest that the sedimentary rocks were derived from erosion of felsic to mafic igneous source rocks. Collectively, the structural and lithogeochemical characteristics of the Storø greenstone belt are consistent with collision (accretion) of unrelated Archean volcanic rocks formed in supra-subduction zone geodynamic settings. Accordingly, the Mesoarchean and Neoarchean rock record of the Storø greenstone belt may well be explained in terms of modern-style plate tectonic processes.  相似文献   
15.
Changes in magnetic and chemical properties of soil during the growth of tomato plants (Lycopersicon esculentum) are examined in this study. The synthetic soils, prepared from sand, topsoil and organic material, were treated with magnetite powder (<5 μm) in order to simulate metal contamination. Six soil treatments were prepared from two soil types: controls, low-contamination and high-contamination treatments (0.01 and 0.05 g of magnetite powder/kg soil, respectively). Overall, the contaminated soils had a greater decrease in magnetic susceptibility (MS) than the controls, and the difference in MS decrease between the treatments was found to be statistically significant for both soil types. Potential reasons for the overall MS decrease were explored, and among them, trace element uptake by plants probably had a minor contribution as the concentration differences of Fe and other trace elements (Ni, Mn) between treatments were not statistically significant. In soils, oxidized and weakly magnetic minerals (maghemite, goethite and hematite) were common after plant growth, when compared with the untreated (background) soil. Such mineral transformations could have contributed to the overall MS decrease. The results show that exposure to Fe contaminants can affect plant growth and suggest that plant growth can measurably change the magnetic properties of their growth media. While the potential variables affecting plant growth were controlled as much as possible, there still remains the potential that biotic and abiotic chemical reactions could have affected the results. Thus, continuous monitoring of the changes in soil magnetic and chemical properties in more complex soil–plant systems is needed.  相似文献   
16.
Accurate constraints on past ocean temperatures and compositions are critical for documenting climate change and resolving its causes. Most proxies for temperature are not thermodynamically based, appear to be subject to biological processes, require regional calibrations, and/or are influenced by fluid composition. As a result, their interpretation becomes uncertain when they are applied in settings not necessarily resembling those in which they were empirically calibrated. Independent proxies for past temperature could provide an important means of testing and/or expanding on existing reconstructions. Here we report measurements of abundances of stable isotopologues of calcitic and aragonitic benthic and planktic foraminifera and coccoliths, relate those abundances to independently estimated growth temperatures, and discuss the possible scope of equilibrium and kinetic isotope effects. The proportions of 13C-18O bonds in these samples exhibits a temperature dependence that is generally similar to that previously been reported for inorganic calcite and other biologically precipitated carbonate-containing minerals (apatite from fish, reptile, and mammal teeth; calcitic brachiopods and molluscs; aragonitic coral and mollusks). Most species that exhibit non-equilibrium 18O/16O (δ18O) and 13C/12C (δ13C) ratios are characterized by 13C-18O bond abundances that are similar to inorganic calcite and are generally indistinguishable from apparent equilibrium, with possible exceptions among benthic foraminiferal samples from the Arctic Ocean where temperatures are near-freezing. Observed isotope ratios in biogenic carbonates can be explained if carbonate minerals generally preserve a state of ordering that reflects the extent of isotopic equilibration of the dissolved inorganic carbon species.  相似文献   
17.
18.
This study expands existing models of proenvironmental behavior (PEB) to examine the potentially important and interacting influences of nature-based recreation and sense of place on participation in conservation-oriented activities. We tested hypothesized relationships using a structural equation modeling approach that accounted for common behavioral antecedents within a sample of 1,124 nature-based recreationists and property owners in rural counties of New York, USA. We found that place attachment played an important role in strengthening connections between nature-based recreation and PEB. Birdwatching and hunting participation contributed independently and significantly to PEB, both directly and indirectly through effects on place meanings and place attachment. While birdwatching appeared to influence place attachment by impacting environmental place meanings, hunting exerted similar effects by affecting sociocultural place meanings. Ultimately, our synthesis results in the articulation of a comprehensive conservation–recreation model that could help researchers and practitioners identify and explore novel pathways to PEB.  相似文献   
19.
The concentrations and the isotopic compositions of S, N and C were studied in soils and in the dominant plant species of three forested watersheds (Québec, Canada) located along a latitudinal and atmospheric deposition gradient. Large increases in S, N and C isotope ratios (up to 3.9‰, 10‰, 2.6‰, respectively) were observed with increasing soil depth at the three watersheds. These increases were accompanied by a strong decrease in elemental concentrations resulting in a strong negative relationship between these two variables. Both S and N concentrations throughout the soil profile and δ34S and δ15N in the mineral soil appeared to increase with increasing S and N deposition rates and decreasing latitude. A strong positive linear relationship was found between δ34S and δ15N (R2 = 0.72) values and between organic S and N concentrations (R2 = 0.96) in soils. The slope of the linear relationship between δ34S and δ15N (δ34S = f(δ15N)) indicated that isotopic fractionation was almost 4 times higher for S than for N during transformations that occurred in soil. However, this difference might reflect a higher degree of openness of the S cycle compared to the N cycle rather than an isotope effect per se. Overall, the results suggest that N and S inputs significantly impact the isotope ratios and the concentrations of N and S in the soils, and that S and N were closely associated and subject to similar processes with the same isotopic effects throughout the soil profile. Contrary to most studies, δ34S-SO4 in stream water of the most northerly site with the lowest S deposition rate was significantly higher than δ34S-SO4 in atmospheric depositions but similar to the δ34S of the bulk mineral soil. It suggests that the mineral soil actually contributes a large portion of the stream S-SO4 for this site.  相似文献   
20.
The longline is modelled using lumped masses and tension-only springs including structural damping. The mussel culture is modelled as cylinders attached to the main line and the equations are formulated for the coupled dynamics of the main line, buoys and mussel socks using Kane's formalism. Surface waves are described by Stokes’ second-order wave theory. The hydrodynamic loads are applied via a Morison's equation approach using the instantaneous relative velocities and accelerations between the fluid field, the longline and the attached buoys and mussel masses. The algorithm is presented and the equations are solved using the Runge–Kutta routine “ode45” in MATLAB. Outputs include position, orientation and velocity of all components and tension in all line segments. The numerical model may be used to predict the dynamics of longline systems using drag coefficients determined from field measurements. We expect that the results will be useful for checking and optimizing shellfish aquaculture designs prior to installation and for modifying existing designs to safeguard against failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号