首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   10篇
测绘学   1篇
大气科学   2篇
地球物理   63篇
地质学   22篇
海洋学   3篇
天文学   13篇
自然地理   4篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   11篇
  2014年   9篇
  2013年   7篇
  2012年   4篇
  2011年   7篇
  2010年   7篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1993年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1953年   1篇
  1949年   1篇
  1937年   2篇
  1926年   1篇
排序方式: 共有108条查询结果,搜索用时 265 毫秒
51.
Tools for assessing building reparability via the estimation of expected performance loss (PL) and associated costs for repair of existing RC building classes damaged by an earthquake are presented. The assessment approach relies on the availability of a number of suitably developed: (i) capacity curves for representative building classes; (ii) curves relating global ductility demand μ to the expected PL for the same classes; and (iii) PL–cost for repair relationship calibrated on database collecting cost data of more than 2300 buildings damaged after 2009 L'Aquila earthquake. The tools are developed applying a simplified procedure involving the simulated design of existing building classes, the assumption of predefined collapse mechanism types and the analyses of the seismic behavior of equivalent SDOF systems representative of ‘intact’ and ‘damaged’ structures after an earthquake. The use of these tools may give useful preliminary indications to decision makers for establishing reparability priorities in the aftermath of damaging earthquakes or to insurance companies to value sound insurance premium for existing building classes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
52.
53.
A previous authors' non-Boussinesq model of solar differential rotation (BPCM) is used to determine the angular velocity distribution within the convection zone, when the momentum and energy equations are solved with boundary conditions expressing the homogeneity of flux and temperature at the Sun's surface.  相似文献   
54.
Shallow SH-wave reflections are far from routine, although their study can provide insights into important properties of near-surface materials that cannot be inferred from P-wave data alone. Difficulties in separating SH-wave reflections from Love waves are generally considered the major obstacle to progress in shallow SH-wave seismic reflection. This may be the case in surveys undertaken at great depths, but it is not necessarily true for reflection data gathered at shallow and ultra-shallow depths. This paper shows that when SH-wave data possess wavelengths greater than the thickness of the superficial layer, Love waves are not greatly dispersed. In this case, misinterpretation between parts of reflection hyperbolae and waveguide arrivals is sufficiently limited. In a one-layer model earth, which well approximates typical situations of the near-surface underground, the most energetic modes (the lowermost modes) of the dispersed surface waves have a dominant frequency band that falls below the wavelet spectrum of the shallow reflections; therefore, they can be filtered out in the frequency domain. Higher modes, although their spectral content overlaps that of the reflections, exhibit small amplitudes on seismograms and leave strong reflections unaffected.We present field examples from three different sites where we were able to obtain ultra-shallow reflections (< 3 m) in unconsolidated sediments. The high level of resolution (vertical resolution up to 15 cm) suggests that SH-wave reflection imaging has the potential to complement other high-resolution techniques, such as P-wave reflection and ground-penetrating radar (GPR) imaging, allowing a better and more complete characterization of the near-surface environments.  相似文献   
55.
Fitting the results of linear normal-mode analysis of the solar five-minute oscillations to the observed k - ω diagram selects a class of models of the Sun's envelope. It is a property of all the models in this class that their convection zones are too deep to permit substantial transmission of internal g modes of degree 20 or more. This is in apparent conflict with Hill and Caudell's (1979) claim to have detected such modes in the photosphere. A proposal to resolve the conflict was made by Rosenwald and Hill (1980). They pointed out that despite the impressive agreement between linearized theory and observation, nonlinear phenomena in the solar atmosphere might influence the eigenfrequencies considerably. In particular, they suggested that a correct nonlinear analysis could predict a shallow convection zone. This paper is an enquiry into whether their hypothesis is plausible. We construct k - ω diagrams assuming that the modes suffer local nonlinear distortions in the atmosphere that are insensitive to the amplitude of oscillation over the range of amplitudes that are observed. The effect of the nonlinearities on the eigenfrequencies is parameterized in a simple way. Taking a class of simple analytical models of the Sun's envelope, we compute the linear eigenfrequencies of one model and show that no other model can be found whose nonlinear eigenfrequencies agree with them. We show also that the nonlinear eigenfrequencies of a particular solar model with a shallow convective zone, computed with more realistic physics, cannot be made to agree with observation. We conclude, therefore, that the hypothesis of Rosenwald and Hill is unlikely to be correct.  相似文献   
56.
Seismic tomography imaging was employed to make a diagnosis and choose a remedy for an embankment supported by a retaining wall showing clear evidence of structural instability. The geometry and structural characteristics of the wall, the inside geometry of cracks, and the physical parameters of the underground materials were the primary objectives of the geophysical survey. Seismic data were acquired along two vertical sections each one delimited by the lines of the sources within an inclined borehole and of the receivers lying on the ground. For each section, a total of 744 travel times were inverted to obtain compressional-wave velocities on a regular rectangular grid of squared cells (1 m × 1 m) using an inversion algorithm which is based on the simultaneous iterative reconstruction technique (SIRT). Ultrasonic tests carried out in laboratory on intact specimens, together with other supplemental site information, improved tomography resolution, allowing global and node constraints that forced the solution of the inverse problem to match known boundary values. Tomography imaged two high-velocity zones separated by a curved-shape low-velocity zone. The first ones were found to be compatible with the concrete retaining wall and with the schist materials, ranging from highly weathered to intact schist, while the low-velocity zone was interpreted as filling materials and/or completely decomposed rock schist. The combination of seismic tomography and laboratory measurements allowed extrapolation of important parameters over a large volume of rock mass, otherwise only representative of small rock samples near boreholes. It also enabled engineering characterization of subsurface rock mass, providing useful and accurate information to design a remedy for the embankment.  相似文献   
57.
58.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   
59.
The Tsenkher structure, in the Gobi-Altai region of Mongolia, was studied using a wide array of remote sensing data and field observations. The structure has a shallow, 3.6 km wide, central depression bordered by a near-circular ridge (putative crater rim) with breaches to the northwest. The central depression is obliterated partially by fluvial infill through these breaches. Outside the ridge, the western side is a rugged terrain, but the eastern half is characterized by a concentric outer ridge that occurs at about one radius distance from the inner ridge. Although intrusion, salt tectonics and maar crater hypotheses cannot be completely ruled out, its morphology strongly implies an impact origin for the Tsenkher structure. If of impact origin, it has a well-preserved morphology and its position in the basin fills indicates that the formation may have occurred relatively recently, sometime during the late Tertiary or Quaternary. The outer ridge morphology is similar to rampart craters on Mars, whose formation has been attributed to fluidization of a water-rich target layer and ejecta materials, or to atmospheric entrainment and deposition of ejected materials. However, other hypotheses including erosional remnant of ejecta blanket, erosional scarp of structural rim uplift, multi-ring or deeply eroded crater rim of a peak-ring crater are also possible at this stage. A complex fluvial and probable lacustrine history is envisaged within the Tsenkher structure. The structure is also associated with archaeology, including Paleolithic and Bronze Age remains.  相似文献   
60.
A neural network system for P and S-picking and location of earthquakes in Northeastern Italy is described. It is applied to 7108 seismograms corresponding to 1147 earthquakes occurring in Northeastern Italy and surrounding area in the period 2000–2003. Its results are compared with two sets of manual picks and with the picks performed by the existing seismic alert system. The new system recognizes 89% and 67% of P and S arrival times, respectively, which allows locating 92% of the earthquakes. P and S-picks differ from the best available manual picks by 0.00 ± 0.07 s and 0.00 ± 0.18 s, respectively. The corresponding earthquake locations differ by −0.18± 0.77 km in longitude, 0.10± 0.62 km in latitude and 0.1± 2.0 km in depth. These results suggest its use for alert purposes and rapid production of preliminary bulletins.Considering a subset of picks that are common to all the available data sets, the absolute accuracy (i.e., the inverse of the standard deviation of differences between the estimated and the true, unknown arrival times) of each picking method is estimated. The best available manual data set has standard deviation 0.03 s for P waves and 0.07 s for S waves, while for the new system it is 0.06 s and 0.18 s for P and S waves, respectively.This paper has not been submitted elsewhere in identical or similar form, nor will it be during the first three months after its submission to Journal of Seismology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号