首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   0篇
测绘学   3篇
大气科学   3篇
地球物理   4篇
地质学   40篇
海洋学   1篇
天文学   3篇
自然地理   8篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   7篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
31.
32.
The most recent deglaciation resulted in a global sea‐level rise of some 120 m over approximately 12 000 years. In this Part I of two parts, a moving boundary numerical model is developed to predict the response of rivers to this rise. The model was motivated by experiments at small scale, which have identified two modes describing the transgression of a river mouth: autoretreat without abandonment of the river delta (no sediment starvation at the topset–foreset break) and sediment‐starved autoretreat with abandonment of the delta. In the latter case, transgression is far more rapid and its effects are felt much further upstream of the river mouth. The moving boundary numerical model is checked against experiments. The generally favourable results of the check motivate adaptation of the model to describe the response of the much larger Fly‐Strickland River system, Papua New Guinea to Holocene sea‐level rise; this is done in the companion paper, Part II.  相似文献   
33.
34.
The increase of soil mass flux with distance downwind, the fetch effect for wind erosion, has been observed and reported on since 1939. This model incorporates the following three mechanisms. (1) The ‘avalanching’ mechanism in which one particle moving downwind would dislodge one or more particles upon impact with the surface. The result of a chain of such events is an increase of mass flux with distance. (2) The ‘aerodynamic feedback’ effect, suggested by P. R. Owen, in which the aerodynamic roughness height is increased by saltation of particles; the resulting increased momentum flux increases saltation. These increases define a positive feedback loop with respect to distance downwind. (3) The ‘soil resistance’ mechanism, which is largely an expression of the change with distance of threshold velocity. Change of threshold velocities may be caused by inhomogeneities of the soil or progressive destruction of aggregates and crust in the direction of saltation fetch. An experiment was run in March 1993 at Owens Lake to test this model. Detailed measurements of wind profiles and mass fluxes were taken on a line parallel to the wind direction. These data support the proposed three-mechanism model.  相似文献   
35.
Abstract

Two network-design technologies are compared by random sub-sampling of actual streamflow data. The technologies, Network Analysis for Regional Information (NARI) and Network Analysis Using Generalized Least Squares (NAUGLS), have a common objective, viz. to maximize regional information within a limited budget and time horizon. The data used for intercomparison are from a network of 146 streamgauges in the central part of the United States. In general, the results for the illustrative example indicate that the NAUGLS method conveys more information than the NARI method to the network designer interested in maximizing regional information about mean annual flows with a limited budget.  相似文献   
36.
Two large (200 to 300 km), near‐continuous outcrop transects and extensive well‐log data (ca 2800 wells) allow analysis of sedimentological characteristics and stratigraphic architecture across a large area (ca 60 000 km2) of the latest Santonian to middle Campanian shelf along the western margin of the Western Interior Seaway in eastern Utah and western Colorado, USA. Genetically linked depositional systems are mapped at high chronostratigraphic resolution (ca 0·1 to 0·5 Ma) within their sequence stratigraphic context. In the lower part of the studied interval, sediment was dispersed via wave‐dominated deltaic systems with a ‘compound clinoform’ geomorphology in which an inner, wave‐dominated shoreface clinoform was separated by a muddy subaqueous topset from an outer clinoform containing sand‐poor, gravity‐flow deposits. These strata are characterized by relatively steep, net‐regressive shoreline trajectories (>0·1°) with concave‐landward geometries, narrow nearshore belts of storm‐reworked sandstones (2 to 22 km), wide offshore mudstone belts (>250 km) and relatively high sediment accumulation rates (ca 0·27 mm year?1). The middle and upper parts of the studied interval also contain wave‐dominated shorefaces, but coeval offshore mudstones enclose abundant ‘isolated’ tide‐influenced sandstones that were transported sub‐parallel to the regional palaeoshoreline by basinal hydrodynamic (tidal?) circulation. These strata are characterized by relatively shallow, net‐regressive shoreline trajectories (<0·1°) with straight to concave‐seaward geometries, wide nearshore belts of storm‐reworked sandstones (19 to 70 km), offshore mudstone belts of variable width (130 to >190 km) and relatively low sediment accumulation rates (ca ≤0·11 mm year?1). The change in shelfal sediment dispersal and stratigraphic architecture, from: (i) ‘compound clinoform’ deltas characterized by across‐shelf sediment transport; to (ii) wave‐dominated shorelines with ‘isolated’ tide‐influenced sandbodies characterized by along‐shelf sediment transport, is interpreted as reflecting increased interaction with the hydrodynamic regime in the seaway as successive shelfal depositional systems advanced out of a sheltered embayment (‘Utah Bight’). This advance was driven by a decreasing tectonic subsidence rate, which also suppressed autogenic controls on stratigraphic architecture.  相似文献   
37.
The pattern of dunes within the Gran Desierto of Sonora, Mexico, is both spatially diverse and complex. Identification of the pattern components from remote‐sensing images, combined with statistical analysis of their measured parameters demonstrate that the composite pattern consists of separate populations of simple dune patterns. Age‐bracketing by optically stimulated luminescence (OSL) indicates that the simple patterns represent relatively short‐lived aeolian constructional events since ~25 ka. The simple dune patterns consist of: (i) late Pleistocene relict linear dunes; (ii) degraded crescentic dunes formed at ~12 ka; (iii) early Holocene western crescentic dunes; (iv) eastern crescentic dunes emplaced at ~7 ka; and (v) star dunes formed during the last 3 ka. Recognition of the simple patterns and their ages allows for the geomorphic backstripping of the composite pattern. Palaeowind reconstructions, based upon the rule of gross bedform‐normal transport, are largely in agreement with regional proxy data. The sediment state over time for the Gran Desierto is one in which the sediment supply for aeolian constructional events is derived from previously stored sediment (Ancestral Colorado River sediment), and contemporaneous influx from the lower Colorado River valley and coastal influx from the Bahia del Adair inlet. Aeolian constructional events are triggered by climatic shifts to greater aridity, changes in the wind regime, and the development of a sediment supply. The rate of geomorphic change within the Gran Desierto is significantly greater than the rate of subsidence and burial of the accumulation surface upon which it rests.  相似文献   
38.
A transverse crescentic draa in the Algodones dune field, California, was monitored for a year using surface process mapping, aerial photography and supplemental wind measurement. The draa is oriented by the long-term resultant wind, whereas its superimposed features are in equilibrium with the bedform-modified secondary airflow. Surface airflow and the movement of superimposed bedforms is typically oblique or parallel to the draa brinkline, particularly on the lee slope. Comparison of measurements of draa movement and sand deposition on the lee slope, with expected rates calculated from wind data and draa size, confirm that there is a significant component of sand flow parallel to the draa brinkline. The internal structure being generated at the base of the draa lee slope is inferred from the surface processes active there. Within the space of a kilometer two types of compound cross-strata, separated by an area of simple cross-strata, are being produced. This has significant implications for interpretations of ancient aeolian strata. Variations in internal structure types found in lateral sequence may be generated by one complex bedform, and these cross-strata may be simple or compound. Second-order bounding surface orientations indicate resultant primary palaeowind directions; compound cross-strata dip directions indicate secondary flow conditions. The existence of cross-strata dip directions oblique or perpendicular to the second-order surface indicates longitudinal secondary flow on the lee face, but not necessarily a longitudinal or oblique draa. Without further detailed knowledge about various draa configurations and behaviour, stratification attributed to draas can be used only to interpret activity on the lower draa lee face.  相似文献   
39.
GARY G. LASH 《Sedimentology》1988,35(3):429-447
The Upper Ordovician Martinsburg Formation of eastern Pennsylvania consists of mudstone, siltstone, and sandstone turbidites that accumulated in a tectonically active foreland basin. The mudstone-rich Bushkill Member, the stratigraphically lowest unit of the Martinsburg in this area, grades upward into approximately equal proportions of mudstone, siltstone, and sandstone of the Ramseyburg Member. Many of the turbidites of these units are arranged in small-scale (1–9 m) fining-upward sequences that are interpreted as reflecting the influence of external or allocyclic controls such as variations in the local rate of sea-level rise and/or variations in the intensity of tectonic activity in shelf/nearshore or hinterland areas rather than more commonly cited autocyclic mechanisms. The thick (approximately 2000 m) Bushkill-Ramseyburg coarsening-upward sequence records progradation of a muddy turbidite depositional system along the axis of the foreland basin. Although this sequence accumulated during a Caradocian eustatic rise in sea-level, sedimentation rates landward of the shoreline were apparently great enough to allow for long-term seaward progradation of the shelf source. The paucity of depositional lobe-like facies (coarsening-upward sequences) in the Bushkill Member allows for tentative comparison of the progradational Bushkill-Ramseyburg system with the active fan lobe of the Mississippi Fan. Progradation of the Bushkill-Ramseyburg system ceased abruptly when mudstone turbidites and laminated black shale of the upper unit of the Martinsburg, the Pen Argyl Member, accumulated. The great thickness of some mudstone turbidite beds of the Pen Argyl Member is interpreted to record topographic confinement of the central Appalachian foreland basin, which may have helped to preclude continued progradation of the Bushkill-Ramseyburg turbidite system.  相似文献   
40.
Pattern formation is a fundamental aspect of self‐organization in fields of bedforms. Time‐series aerial photographs and airborne light detection and ranging show that fully developed, crescentic aeolian dunes at White Sands, New Mexico, interact and the dune pattern organizes in systematically similar ways as wind ripples and subaqueous dunes and ripples. Documented interactions include: (i) merging; (ii) lateral linking; (iii) defect repulsion; (iv) bedform repulsion; (v) off‐centre collision; (vi) defect creation; and (vii) dune splitting. Merging and lateral linking are constructive interactions that give rise to a more organized pattern. Defect creation and bedform splitting are regenerative interactions that push the system to a more disorganized state. Defect/bedform repulsion and off‐centre collision cause significant pattern change, but appear to be neutral in overall pattern development. Measurements of pattern parameters (number of dunes, crest length, defect density, crest spacing and dune height), dune migration rates, and the type and frequency of dune interactions within a 3500 m box transect from the upwind margin to the core of the dune field show that most pattern organization occurs within the upwind field. Upwind dominance by constructive interactions yields to neutral and regenerative interactions in the field centre. This spatial change reflects upwind line source and sediment availability boundary conditions arising from antecedent palaeo‐lake topography. Pattern evolution is most strongly coupled to the pattern parameters of dune spacing and defect density, such that spatially or temporally the frequency of bedform interactions decreases as the dunes become further apart and have fewer defects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号