首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
地球物理   21篇
地质学   7篇
海洋学   9篇
天文学   22篇
  2021年   1篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   5篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1976年   2篇
  1975年   1篇
  1969年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
21.
A dropstone‐bearing, Middle Permian to Early Triassic peri‐glacial sedimentary unit was first discovered from the Khangai–Khentei Belt in Mongolia, Central Asian Orogenic Belt. The unit, Urmegtei Formation, is assumed to cover the early Carboniferous Khangai–Khentei accretionary complex, and is an upward‐fining sequence, consisting of conglomerates, sandstones, and varved sandstone and mudstone beds with granite dropstones in ascending order. The formation was cut by a felsic dike, and was deformed and metamorphosed together with the felsic dike. An undeformed porphyritic granite batholith finally cut all the deformed and metamorphosed rocks. LA‐ICP‐MS, U–Pb zircon dating has revealed the following 206Pb/238U weighted mean igneous ages: (i) a granite dropstone in the Urmegtei Formation is 273 ± 5 Ma (Kungurian of Early Permian); (ii) the deformed felsic dike is 247 ± 4 Ma (Olenekian of Early Triassic); and (iii) the undeformed granite batholith is 218 ± 9 Ma (Carnian of Late Triassic). From these data, the age of sedimentation of the Urmegtei Formation is constrained between the Kungurian and the Olenekian (273–247 Ma), and the age of deformation and metamorphism is constrained between the Olenekian and the Carnian (247–218 Ma). In Permian and Triassic times, the global climate was in a warming trend from the Serpukhovian (early Late Carboniferous) to the Kungurian long and severe cool mode (328–271 Ma) to the Roadian to Bajocian (Middle Jurassic) warm mode (271–168 Ma), with an interruption with the Capitanian Kamura cooling event (266–260 Ma). The dropstone‐bearing strata of the Urmegtei Formation, together with the glacier‐related deposits in the Verkhoyansk, Kolyma, and Omolon areas of northeastern Siberia (said to be of Middle to Late Permian age), must be products of the Capitanian cooling event. Although further study is needed, the dropstone‐bearing strata we found can be explained in two ways: (i) the Urmegtei Formation is an autochthonous formation indicating a short‐term expansion of land glacier to the central part of Siberia in Capitanian age; or (ii) the Urmegtei Formation was deposited in or around a limited ice‐covered continent in northeast Siberia in the Capitanian and was displaced to the present position by the Carnian.  相似文献   
22.
A 3729-m-deep geothermal research well, WD-1a, provides us with a unique opportunity to study initial petrographic features of a high-temperature granite just after solidification of magma. The well succeeded in collecting three spot-cores of the Kakkonda Granite that is a pluton emplaced at a shallow depth and regarded as a heat source of the active Kakkonda geothermal system. The core samples were collected at the present formation temperatures of 370, 410 and over 500°C. These samples are granodiorite to tonalite consisting mainly of plagioclase, quartz, hornblende, biotite and K-feldspar. A sample collected at a formation temperature of over 500°C possesses the following remarkable petrographic features compared to the other two samples. Interstitial spaces are not completely sealed. K-feldspar exhibits no perthite by the exsolution of albite lamella. Quartz includes glassy melt inclusions without devitrification. Hornblende is less intensively altered to actinolite, and biotite is not altered. This study directly confirmed that perthite in K-feldspar is a recrystallization texture formed at 410–500°C based on a comparison of the in situ temperatures of the samples. Chemical compositions of minerals were analyzed to compare temperatures determined from geothermometers in several publications to the in situ temperatures of the samples.  相似文献   
23.
Abstract

The paper consists of two parts. The first introduces the dynamo equation into a rotating gaseous disk of finite thickness and then searches for its solution for the generation and maintenance of large-scale bisymmetric spiral (BSS) magnetic fields. We determine numerically the dynamo strength and vertical thickness of the gaseous disk which are necessary for the BSS magnetic fields to rotate as a wave over large area of the disk.

Next we present linearized equations of motion for the self-gravitating disk gas under the Lorentz force due to the BSS magnetic fields. Since the angular velocity of the BSS field is very close to that of the spiral density wave, a nearly-resonant interaction is caused between these two waves to produce large-amplitude condensation of gas in a double-spiral way. The BSS magnetic field is considered as a promising agency to trigger and maintain the spiral density wave.  相似文献   
24.
The granitic mylonite zone in the Cretaceous Ryoke metamorphic belt contains deformed amphibolites as thin layers. The amphibolite layers do not exhibit pinch‐and‐swell or boudinage structures, even when contained in a high‐strain granitic mylonite. This mode of occurrence suggests that they were deformed as much as the surrounding granite mylonite. In the highly deformed zone, strongly foliated amphibolites contain Ti‐rich brown amphibole porphyroclasts rimmed by Ti‐poor green amphibole, titanite and chlorite. These porphyroclasts are elongated, forming shear surfaces defined by preferential distribution of the chlorite and titanite. Porphyroclastic plagioclase in the strongly foliated amphibolites consists of two components: an anorthite‐rich core and an anorthite‐poor rim. Based on these observations, the mass‐balanced reaction occurring during deformation is defined as As the reaction products form a weak interconnected matrix, the strain rate of the amphibolites may be controlled by the rate of dissolution–precipitation through fluids. Weakly foliated amphibolites in the low‐strain zone exhibit cataclastic microstructures, whereas the strongly foliated amphibolites do not exhibit such features. These microstructural and chemical changes suggest that high‐strain amphibolites were initially deformed by cataclasis, followed by deformation through metamorphic reactions. During the metamorphism/deformation, old plagioclase grains with high Xan were not stable and dissolved, and new plagioclase grains with low Xan crystallized at the old plagioclase rim. Dissolution of old plagioclase and precipitation of new plagioclase occurred normal to and parallel to the foliation, respectively, reflecting incongruent pressure solution due to differential stress and changes in P–T–H2O conditions. The development of incongruent pressure solution is attributed to increased fluid flux in the strongly foliated amphibolites, as evidenced by the greater abundance of hydration‐reaction products in the strongly foliated amphibolites than in the weakly foliated ones.  相似文献   
25.
Ocean-bottom pressure records obtained near the epicenter of the 2011 Tohoku-Oki earthquake were examined to test whether the earthquake was preceded by substantial precursory crustal deformation. The seafloor data enabled us to search for small-scale preslip near the epicenter that would be difficult to identify from terrestrial geodetic data. After treating the data to reduce nontectonic fluctuations, we obtained a time series of seafloor vertical deformation in the epicentral region with a noise level of 2–4 cm. No significant crustal deformation related to preslip was detected in the period of roughly a day before the mainshock, whereas postseismic deformation associated with the largest foreshock 2 days before the mainshock was apparent. From our quantitative estimate of the sensitivity of the seafloor network in detecting slip on the plate interface, we conclude that the Tohoku-Oki earthquake was not preceded by preslip with moment release greater than moment magnitude (Mw) 6.2 in the vicinity of the hypocenter or greater than Mw 6.0 along the subduction interface near the trench.  相似文献   
26.
The dating of radiolarian biostratigraphic zones from the Silurian to Devonian is only partially understood. Dating the zircons in radiolarian‐bearing tuffaceous rocks has enabled us to ascribe practical ages to the radiolarian zones. To extend knowledge in this area, radiometric dating of magmatic zircons within the radiolarian‐bearing Hitoegane Formation, Japan, was undertaken. The Hitoegane Formation is mainly composed of alternating beds of tuffaceous sandstones, tuffaceous mudstones and felsic tuff. The felsic tuff and tuffaceous mudstone yield well‐preserved radiolarian fossils. Zircon grains showing a U–Pb laser ablation–inductively coupled plasma–mass spectrometry age of 426.6 ± 3.7 Ma were collected from four horizons of the Hitoegane Formation, which is the boundary between the Pseudospongoprunum tauversi to Futobari solidus–Zadrappolus tenuis radiolarian assemblage zones. This fact strongly suggests that the boundary of these assemblage zones is around the Ludlowian to Pridolian. The last occurrence of F. solidus is considered to be Pragian based on the reinterpretation of a U–Pb sensitive high mass‐resolution ion microprobe (SHRIMP) zircon age of 408.9 ± 7.6 Ma for a felsic tuff of the Kurosegawa belt, Southwest Japan. Thus the F. solidus–Z. tenuis assemblage can be assigned to the Ludlowian or Pridolian to Pragian. The present data also contribute to establishing overall stratigraphy of the Paleozoic rocks of the Fukuji–Hitoegane area. According to the Ordovician to Carboniferous stratigraphy in this area, Ordovician to Silurian volcanism was gradually reduced to change the sedimentary environment into a tropical lagoon in the early Devonian. And the quiet Carboniferous environment was subsequently interrupted, throwing it once more into the volcanic conditions in the Middle Permian.  相似文献   
27.
Situational awareness of Earth-orbiting particles is important for human extraterrestrial activities. Given an optical observation, an admissible region can be defined over the topocentric range/range-rate space, with each point representing a possible orbit for the object. However, based on our understanding of Earth orbiting objects, we expect that certain orbits in that distribution, such as circular or zero-inclination orbits, would be more likely than others. In this research, we present an analytical approach for describing the existence of such special orbits for a given observation pass, and investigate topological features of the range/range-rate space by means of singularities in orbital elements.  相似文献   
28.
29.
The relation between the units and readings of time and space coordinates of terrestrial and barycentric reference frames is discussed from the viewpoint of general relativity. Attention is paid to the unit of space coordinates since the International Astronomical Union (IAU) regulates only the unit of time in the above two frames. Two definitions of unit of length are examined and their effects on the numerical expression of coordinate transformation, equations of planetary motions, and those for light propagation time are discussed. A clear conflict is found between the IAU (1976) recommendation on the definition of the time-scales in different frames of reference and the statement that all constants in the IAU (1976) new system of astronomical constants are defined in terms of the Internationsl System of units (SI units). One of the above two definitions is proposed to resolve this conflict by the least alteration to current procedures for analysing the recent astrometric observations such as the radar/laser rangings, the range and range-rate, and the very long baseline interferometric observations. Also, an interpretation of numerical values in the IAU (1976) new system of astronomical constants is presented. It is stressed that the definition proposed in this paper requires that a formula slightly different from that in current use be employed in the numerical transformation of readings of coordinates between the terrestrial and barycentric reference frames.  相似文献   
30.
Groundwater movements in volcanic mountains and their effects on streamflow discharge and representative elementary area (REA) have remained largely unclear. We surveyed the discharge and chemical composition of spring and stream water in two catchments: the Hontani river (NR) catchment (6.6 km2) and the Hosotani river (SR) catchment (4.0 km2) at the southern part of Daisen volcano, Japan. Daisen volcano is a young volcano (17 × 103 years) at an early stage of erosion. Our study indicated that deep groundwater that moved through thick lava and pyroclastic flows and that could not be explained by shallow movements controlled by surface topography contributed dominantly to streamflow at larger catchment areas. At the NR catchment, the deep groundwater contribution clearly increased at a catchment boundary defined by an area of 3.0 km2 and an elevation of 800 m. At the SR catchment, the contribution deep groundwater to the stream also increased suddenly at a boundary threshold of 2.0 and 700 m. Beyond these thresholds, the contributions of deep bedrock groundwater remained constant, indicating that the REA is between 2 and 3 km2 at the observed area. These results indicate that the hydrological conditions of base flow were controlled mainly by the deep bedrock groundwater that moved through thick lava and pyroclastic flows in the undissected volcanic body of the upper part of the catchment. Our study demonstrates that deep and long groundwater movements via a deep bedrock layer including thick deposits of volcanic materials at the two catchments on Daisen volcano strongly determined streamflow discharge instead of the mixing of small‐scale hydrological conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号