首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   2篇
  国内免费   1篇
大气科学   7篇
地球物理   16篇
地质学   61篇
海洋学   12篇
天文学   10篇
综合类   1篇
自然地理   1篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   8篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1992年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1969年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
91.
Recent policy initiatives for the inner cities and regions of Britain were reviewed in the context of the continued and deepening processes of metropolitan decentralisation of population and economic activity and of regional divergence in levels of economic well-being. The result is a policy focus on those areas considered as being on the margins of economic viability. Research evaluating past policy indicates only modest potential for the success of such a focus. Policies having a growth stimulation objective may be better centred outside these most marginal areas. Policies having a welfare objective may achieve greater efficiency if they have no particular spatial dimension.  相似文献   
92.
High PT experiments were performed in the range 2.5–19 GPa and 800–1,500°C using a synthetic peridotite doped with trace elements and OH-apatite or with Cl-apatite + phlogopite. The aim of the study was (1) to investigate the stability and phase relations of apatite and its high PT breakdown products, (2) to study the compositional evolution with P and T of phosphate and coexisting silicate phases and (3) to measure the Cl-OH partitioning between apatite and coexisting calcic amphibole, phlogopite and K-richterite. Apatite is stable in a garnet-lherzolite assemblage in the range 2.5–8.7 GPa and 800–1,100°C. The high-P breakdown product of apatite is tuite γ-Ca3 (PO4)2, which is stable in the range 8–15 GPa and 1,100–1,300°C. Coexisting apatite and tuite were observed at 8 GPa/1,050°C and 8.7 GPa/1,000°C. MgO in apatite increases with P from 0.8 wt% at 2.5 GPa to 3.2 wt% at 8.7 GPa. Both apatite and tuite may contain significant Na, Sr and REE with a correlation indicating 2 Ca2+=Na+ + REE3+. Tuite has always higher Sr and REE and lower Fe and Mg than apatite. Phosphorus in the peridotite phases decreases in the order Pmelt ≫ Pgrt ≫ PMg2SiO4 > Pcpx > Popx. The phosphate-saturated P2O5 content of garnet increases from 0.07 wt% at 2.5 GPa to 1.5 wt% at 12.8 GPa. Due to the low bulk Na content of the peridotite, [8]Na[4]P[8]M2+ −1 [4]Si−1 only plays a minor role in controlling the phosphorus content of garnet. Instead, element correlations indicate a major contribution of [6]M2+[4]P[6]M3+ −1 [4]Si−1. Pyroxenes contain ~200–500 ppm P and olivine has 0.14–0.23 wt% P2O5 in the P range 4–8.7 GPa without correlation with P, T or XMg. At ≥12.7 GPa, all Mg2SiO4 polymorphs have <200 ppm P. Coexisting olivine and wadsleyite show an equal preference for phosphorus. In case of coexisting wadsleyite and ringwoodite, the latter fractionates phosphorus. Although garnet shows by far the highest phosphorus concentrations of any peridotite silicate phase, olivine is no less important as phosphorus carrier and could store the entire bulk phosphorus budget of primitive mantle. In the Cl-apatite + phlogopite-doped peridotite, apatite contains 0.65–1.35 wt% Cl in the PT range 2.5–8.7 GPa/800–1,000°C. Apatite coexists with calcic amphibole at 2.5 GPa, phlogopite at 2.5–5 GPa and K-richterite at 7 GPa, and all silicates contain between 0.2 and 0.6 wt% Cl. No solid potassic phase is stable between 5 and 8.7 GPa. Cl strongly increases the solubility of K in hydrous fluids. This may lead to the breakdown of phlogopite and give rise to the local presence in the mantle of fluids strongly enriched in K, Cl, P and incompatible trace elements. Such fluids may get trapped as micro-inclusions in diamonds and provide bulk compositions suitable for the formation of unusual phases such as KCl or hypersilicic Cl-rich mica.  相似文献   
93.
We present the iron isotope composition of primary, diagenetic and metamorphic minerals in five samples from the contact metamorphosed Biwabik Iron Formation. These samples attained peak metamorphic temperatures of <200, <340, ∼500, <550, and <740°C respectively. δ56Fe of bulk layers ranges from −0.8 to +0.8‰; in some samples the layers may differ by >1‰ on the millimeter scale. Minerals in the lowest grade samples consistently show a sequence in which δ56Fe of magnetite > silicate ≥ carbonate. The inter-mineral Fe isotope differences vary in a fashion that cannot be reconciled with theoretical temperature-dependent fractionation factors. Textural evidence reveals that most, if not all, magnetite in the Biwabik Formation is diagenetic, not primary, and that there was tremendous element mobility during diagenesis. The short duration of contact metamorphism allowed diagenetic magnetite compositions to be preserved throughout prograde metamorphism until at least the appearance of olivine. Magnetite compositions therefore act as an isotope record of the environment in which these sediments formed. Larger-scale fluid flow and longer timescales may allow equilibration of Fe isotopes in regionally metamorphosed rocks to lower temperatures than in contact metamorphic environments, but weakly regionally metamorphosed rocks may preserve small-scale Fe isotopic heterogeneities like those observed in the Biwabik Iron Formation. Importantly, Fe isotope compositions that are characteristic of chemical sedimentation or hydrothermal processes are preserved at low grade in the form of large inter-mineral variations, and at high grade in the form of unique bulk rock compositions. This observation confirms earlier work that has suggested that Fe isotopes can be used to identify sedimentary processes in the Precambrian rock record. An erratum to this article can be found at  相似文献   
94.
We present the results of a search for fast spikes in 5483 hard X-ray solar flares as observed with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission (SMM). Hundreds of fast spikes with durations of less than 1 second have been detected at time resolutions of 128 ms and 10 ms. Fast spikes have been detected with rise and decay times as short as 20 ms and with widths as short at 45 ms that represent the fastest hard X-ray variations yet seen from the Sun. The observations of such fast variations place new constraints on the physical nature of the source.  相似文献   
95.
Major and trace element mineral/melt partition coefficients are presented for phases on the liquidus of fertile peridotite at 23-23.5 GPa and 2300 °C. Partitioning models, based on lattice-strain theory, are developed for cations in the ‘8-fold’ sites of majorite and Mg-perovskite. Composition-dependant partitioning models are made for cations in the 12-fold site of Ca-perovskite based on previously published data. Dmin/melt is extremely variable for many elements in Ca-perovskite and highly correlated with certain melt compositional parameters (e.g. CaO and Al2O3 contents). The 8-fold sites in Mg-perovskite and majorite generally have ideal site radii between 0.8 and 0.9 Å for trivalent cations, such that among rare-earth-elements (REE) Dmin/melt is maximum for Lu. Lighter REE become increasingly incompatible with increasing ionic radii. The 12-fold site in Ca-perovskite is larger and has an ideal trivalent site radius of ∼1.05 Å, such that the middle REE has the maximum Dmin/melt. Trivalent cations are generally compatible to highly compatible in Ca-perovskite giving it considerable leverage in crystallization models. Geochemical models based on these phase relations and partitioning results are used to test for evidence in mantle peridotite of preserved signals of crystal differentiation in a deep, Hadean magma ocean.Model compositions for bulk silicate Earth and convecting mantle are constructed and evaluated. The model compositions for primitive convecting mantle yield superchondritic Mg/Si and Ca/Al ratios, although many refractory lithophile element ratios are near chondritic. Major element mass balance calculations effectively preclude a CI-chondritic bulk silicate Earth composition, and the super-chondritic Mg/Si ratio of the mantle is apparently a primary feature. Mass balance calculations indicate that 10-15% crystal fractionation of an assemblage dominated by Mg-perovskite, but with minor amounts of Ca-perovskite and ferropericlase, from a magma ocean with model peridotite-based bulk silicate Earth composition produces a residual magma that resembles closely the convecting mantle.Partition coefficient based crystal fractionation models are developed that track changes in refractory lithophile major and trace element ratios in the residual magma (e.g. convecting mantle). Monomineralic crystallization of majorite or Mg-perovskite is limited to less than 5% before certain ratios fractionate beyond convecting mantle values. Only trace amounts of Ca-perovskite can be tolerated in isolation due to its remarkable ability to fractionate lithophile elements. Indeed, Ca-perovskite is limited to only a few percent in a deep mantle crystal assemblage. Removal from a magma ocean of approximately 13% of a deep mantle assemblage comprised of Mg-perovskite, Ca-perovskite and ferropericlase in the proportions 93:3:4 produces a residual magma with a superchondritic Ca/Al ratio matching that of the model convecting mantle. This amount of crystal separation generates fractionations in other refractory lithophile elements ratios that generally mimic those observed in the convecting mantle. Further, the residual magma is expected to have subchondritic Sm/Nd and Lu/Hf ratios. Modeling shows that up to 15% crystal separation of the deep mantle assemblage from an early magma ocean could have yielded a convecting mantle reservoir with 143Nd/144Nd and 176Hf/177Hf isotopic compositions that remain internal to the array observed for modern oceanic volcanic rocks. If kept in isolation, the residual magma and deep crystal piles would grow model isotopic compositions that are akin to enriched mantle 1 (EM1) and HIMU reservoirs, respectively, in Nd-Hf isotopic space.  相似文献   
96.
Multi-site simulation of hydrological data are required for drought risk assessment of large multi-reservoir water supply systems. In this paper, a general Bayesian framework is presented for the calibration and evaluation of multi-site hydrological data at annual timescales. Models included within this framework are the hidden Markov model (HMM) and the widely used lag-1 autoregressive (AR(1)) model. These models are extended by the inclusion of a Box–Cox transformation and a spatial correlation function in a multi-site setting. Parameter uncertainty is evaluated using Markov chain Monte Carlo techniques. Models are evaluated by their ability to reproduce a range of important extreme statistics and compared using Bayesian model selection techniques which evaluate model probabilities. The case study, using multi-site annual rainfall data situated within catchments which contribute to Sydney’s main water supply, provided the following results: Firstly, in terms of model probabilities and diagnostics, the inclusion of the Box–Cox transformation was preferred. Secondly the AR(1) and HMM performed similarly, while some other proposed AR(1)/HMM models with regionally pooled parameters had greater posterior probability than these two models. The practical significance of parameter and model uncertainty was illustrated using a case study involving drought security analysis for urban water supply. It was shown that ignoring parameter uncertainty resulted in a significant overestimate of reservoir yield and an underestimation of system vulnerability to severe drought.  相似文献   
97.
This paper presents an overview of the modification of clay minerals by propping apart the clay layers with an inorganic complex. This expanded material is converted into a permanent two-dimensional structure, known as pillared clay or shortly PILC, by thermal treatment. The resulting material exhibits a two-dimensional porous structure with acidic properties comparable to that of zeolites. Synthetic as well as natural smectites serve as precursors for the synthesis of Al, Zr, Ti, Fe, Cr, Ga, V, Si and other pillared clays as well as mixed Fe/Al, Ga/Al, Si/Al, Zr/Al and other mixed metal pillared clays. Biofuels form an interesting renewable energy source, where these porous, catalytically active materials can play an important role in the conversion of vegetable oils, such as canola oil, into biodiesel. Transesterification of vegetable oil is currently the method of choice for conversion to biofuel. The second part of this review focuses on the catalysts and cracking reaction conditions used for the production of biofuel. A distinction has been made in three different vegetable oils as starting materials: canola oil, palm oil and sunflower oil.  相似文献   
98.
Experiments at high pressures and temperatures reveal the stability of a Fe4O5-type structured phase in several simple chemical systems. On the one hand, the Fe4O5 end-member is stable in the presence of SiO2-rich phases, including stishovite, but contains ≤0.01 Si cations per formula unit. This indicates that Si is essentially excluded from this phase. On the other hand, the Fe4O5 phase can form solid solutions with Mg and Cr and can coexist with silicate phases at the high PT conditions expected in the transition zone of the mantle (i.e. >~9 GPa). It can coexist with both wadsleyite and Mg-rich ringwoodite and can contain at least 25 mol% Mg2Fe2O5 component. The Fe4O5 phase always contains the least amount of Mg in any given mineral assemblage. Cr-bearing Fe4O5 has been synthesised with up to 46 mol% Fe2Cr2O5 component and can coexist with spinel and/or hematite-eskolatite solid solutions. Substitution of Mg and Cr for Fe2+ and Fe3+, respectively, leads to variations in Fe3+/∑Fe from the ideal value of 0.5 for the Fe4O5 end-member composition, which can influence its redox stability. These cations also have contrasting effects on the unit-cell parameters, which indicate that they substitute into different sites. This initial study suggests that Fe4O5-type structured phases may be stable over a range of PTfO2 conditions and bulk compositions, and can be important in understanding the post-spinel phase relations in a number of chemical systems relevant to the Earth’s transition zone. Thus, the presence of even small amounts of Fe3+ could alter the expected phase relations in peridotitic bulk compositions by stabilising this additional phase.  相似文献   
99.
 The relative importance of thermal diffusion versus new growth or recrystallization on U-Pb isotopic data from sphene is assessed through a study of amphibolites and granite gneisses within the contact aureole of the Red Mountain pluton, Laramie anorthosite complex, Wyoming. Samples were collected along a traverse approximately perpendicular to the margin of the intrusion over a distance of 0.13 to 2.65 km from the contact. The 207Pb/206Pb ages of sphene from amphibolite samples range between 1.43 Ga, the intrusive age of the Red Mountain pluton, to 1.78 Ga, the age of regional metamorphism. The 207Pb/206Pb ages of sphene in rocks metamorphosed above 700° C are within error of the intrusive age of the pluton, and appear to have resulted from diffusional resetting of preexisting sphene and the metamorphic growth of additional sphene at 1.43 Ga. At greater distance from the contact the 207Pb/206Pb ages range from 1.45 to 1.72 Ga. This 300 million year spread in ages is interpreted to result from two periods of sphene growth, one produced during regional metamorphism at 1.78 Ga and another generation of newly grown or recrystallized sphene that formed during contact metamorphism at 1.43 Ga. These two age populations may be identified on the basis of petrographic textures, the morphologies and color differences of grain separates as well as by the U-Pb systematics. In rocks metamorphosed to temperatures less than 700° C, sphene growth was the dominant process controlling the response of the U-Pb isotope system to contact metamorphism. Sphene grew well outside the zone of obvious contact metamorphism. The U-Pb sphene ages were reset by diffusion only at high temperatures, supporting the experimentally determined closure temperature estimates for the U-Pb system in sphene of around 650° C (Cherniak 1993). This study demonstrates that U-Pb ages of sphene can be used to date metamorphism not only in areas with a simple geologic history, such as igneous intrusion or single metamorphic or deformational events, but also to date multiple events so long as different generations of sphene can be identified and separated. Received: 22 August 1995 / Accepted: 17 April 1996  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号