首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   19篇
测绘学   17篇
大气科学   33篇
地球物理   132篇
地质学   168篇
海洋学   18篇
天文学   46篇
自然地理   30篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   10篇
  2016年   15篇
  2015年   15篇
  2014年   8篇
  2013年   15篇
  2012年   8篇
  2011年   22篇
  2010年   22篇
  2009年   27篇
  2008年   16篇
  2007年   17篇
  2006年   15篇
  2005年   25篇
  2004年   12篇
  2003年   21篇
  2002年   11篇
  2001年   5篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   9篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1986年   4篇
  1984年   8篇
  1983年   6篇
  1982年   3篇
  1979年   3篇
  1976年   3篇
  1974年   5篇
  1962年   4篇
  1960年   2篇
  1959年   2篇
  1958年   6篇
  1956年   2篇
  1953年   2篇
  1951年   2篇
  1950年   5篇
  1949年   2篇
  1948年   6篇
排序方式: 共有444条查询结果,搜索用时 15 毫秒
51.
New observations of energetic helium ion fluxes in the Earth’s radiation belts have been obtained with the CAMMICE/HIT instrument on the ISTP/GGS POLAR spacecraft during the extended geomagnetically low activity period April through October 1996. POLAR executes a high inclination trajectory that crosses over both polar cap regions and passes over the geomagnetic equator in the heart of the radiation belts. The latter attribute makes possible direct observations of nearly the full equatorial helium ion pitch angle distributions in the heart of the Earth’s radiation belt region. Additionally, the spacecraft often re-encounters the same geomagnetic flux tube at a substantially off-equatorial location within a few tens of minutes prior to or after the equatorial crossing. This makes both the equatorial pitch angle distribution and an expanded view of the local off-equatorial pitch angle distribution observable. The orbit of POLAR also permitted observations to be made in conjugate magnetic local time sectors over the course of the same day, and this afforded direct comparison of observations on diametrically opposite locations in the Earth’s radiation belt region at closely spaced times. Results from four helium ion data channels covering ion kinetic energies from 520 to 8200 KeV show that the distributions display trapped particle characteristics with angular flux peaks for equatorially mirroring particles as one might reasonably expect. However, the helium ion pitch angle distributions generally flattened out for equatorial pitch angles below about 45°. Significant and systematic helium ion anisotropy difference at conjugate magnetic local time were also observed, and we report quiet time azimuthal variations of the anisotropy index.  相似文献   
52.
2001年1月26日高纬磁层顶通量管事件的观测研究   总被引:3,自引:4,他引:3       下载免费PDF全文
2001年1月26日11:10~11:40UT, ClusterⅡ卫星簇位于午后高纬磁鞘边界层和磁鞘区,此 时行星际磁场Bz为南向. 本文对在此期间观测到的多次磁通量管事件作了详细的研究 ,获得一系列的新发现:(1)高纬磁鞘边界层磁通量管的出现具有准周期性,周期约为78s ,比目前已知的磁层顶向阳面FTE的平均周期(8~11min)小得多. (2)这些通量管都具有 强的核心磁场;其主轴多数在磁场最小变化方向,少数在中间变化方向,有些无法用PAA判 定其方向(需要用电流管PAA确定),这与卫星穿越通量管的相对路径有关. (3)每个事件 都存在很好的HT参考系,在HT参考系中这些通量管是准定常态结构;所有通量管都沿磁层顶 表面运动,速度方向大体相同,都来自晨侧下方. 通量管的径向尺度为1~2RE, 与通 常的FTE通量管相当. (4)起源于磁层的强能离子大体上沿着管轴方向由磁层向磁鞘运动; 起源于太阳风的热等离子体沿管轴向磁层传输. 通量管为太阳风等离子体向磁层输运和磁层 粒子向行星际空间逃逸提供了通道. (5)每个通量管事件都伴随有晨昏电场的反转,该电 场为对流电场.  相似文献   
53.
The polar cusps of the magnetosphere are key regions for the transfer of mass, momentum, and energy from the solar wind into the magnetosphere. Understaning these key regions and the dynamical interactions that occur there are fundamentally important to determining the physical nature of the magnetosphere. In this paper we try to summarize many of the conclusions reached in the papers of this special issue emphasizing the present concepts and definition of the cusp, what variations could be temporal structures and what could be spatial structures. We address the need for further measurements and the role of present and planned projects to address these needs.  相似文献   
54.
The high-altitude dayside cusps (both northern and southern) are extremely dynamic regions in geospace. Large diamagnetic cavities with significant fluctuations of the local magnetic field strength have been observed there. These cusp diamagnetic cavities are always there day after day and are as large as 6 RE Associated with these cavities are charged particles with energies from 20 keV up to 10 MeV. The intensities of the cusp energetic ions have been observed to increase by as much as four orders of the magnitude when compared with regions adjacent to the cusp which includes the magnetosheath. Their seed populations are a mixture of ionospheric and solar wind particles. The measured energetic ion fluxes in the high-altitude cusp are higher than that in both the regions upstream and downstream from the bow shock. Turbulent electric fields with an amplitude of about 10 mV/m are also present in the cusp, and a cusp resonant acceleration mechanism is suggested. The observations indicate that the dayside high-altitude cusp is a key region for transferring the solar wind mass, momentum, and energy into the Earth’s magnetosphere.  相似文献   
55.
We present both statistical and case studies of magnetosheath interaction with the high-latitude magnetopause on the basis of Interball-1 and other ISTP spacecraft data. We discuss those data along with recently published results on the topology of cusp-magnetosheath transition and the roles of nonlinear disturbances in mass and energy transfer across the high-latitude magnetopause. For sunward dipole tilts, a cusp throat is magnetically open for direct interaction with the incident flow that results in the creation of a turbulent boundary layer (TBL) over an indented magnetopause and downstream of the cusp. For antisunward tilts, the cusp throat is closed by a smooth magnetopause; demagnetized ‘plasma balls’ (with scale ∼ few RE, an occurrence rate of ∼25% and trapped energetic particles) present a major magnetosheath plasma channel just inside the cusp. The flow interacts with the ‘plasma balls’ via reflected waves, which trigger a chaotization of up to 40% of the upstream kinetic energy. These waves propagate upstream of the TBL and initiate amplification of the existing magnetosheath waves and their cascade-like decays during downstream passage throughout the TBL. The most striking feature of the nonlinear interaction is the appearance of magnetosonic jets, accelerated up to an Alfvenic Mach number of 3. The characteristic impulsive local momentum loss is followed by decelerated Alfvenic flows and modulated by the TBL waves; momentum balance is conserved only on time scales of the Alfvenic flows (1/fA ∼12 min). Wave trains at fA∼1.3 mHz are capable of synchronizing interactions throughout the outer and inner boundary layers. The sonic/Alfvenic flows, bounded by current sheets, control the TBL spectral shape and result in non-Gaussian statistical characteristics of the disturbances, indicating the fluctuation intermittency. We suggest that the multi-scale TBL processes play at least a comparable role to that of macro-reconnection (remote from or in the cusp) in solar wind energy transformation and population of the magnetosphere by the magnetosheath plasma. Secondary micro-reconnection constitutes a necessary chain at the small-scale (∼ion gyroradius) edge of the TBL cascades. The thick TBL transforms the flow energy, including deceleration and heating of the flow in the open throat, ‘plasma ball’ and the region downstream of the cusp.  相似文献   
56.
Gravity-driven infiltration into the shallow subsurface via small-diameter wells (SDWs), i.e., wells with an inner diameter smaller than 7.5 cm (3 inches) and no gravel pack) has proven to be a cost-efficient and flexible tool for managed aquifer recharge (MAR), as it provides relatively high recharge rates with minimal construction effort. SDWs have a significantly smaller open filter area than larger diameter wells with gravel pack, making the infiltration of low-quality waters through these wells more at risk clogging. To investigate their susceptibility for biological and physical clogging, 24 physical models with different well setups were evaluated by infiltrating either nutrient-poor but turbid water or nutrient-rich but clear water. The experiments showed that smaller diameters and the lack of a gravel pack increase the well's susceptibility to both kinds of clogging. However, this effect was observed to be much more pronounced for physical than for biological clogging. Our conclusion is that SDWs show severe disadvantages with respect to the infiltration of highly turbid waters in comparison to large diameter wells with a gravel pack. Nevertheless, this disadvantage is much less severe when it comes to the infiltration of clear but nutrient-rich waters (e.g., treated wastewater). Depending on the economic and geological circumstances of a MAR-project, this disadvantage could be outweighed by the significantly lower construction costs of SDWs.  相似文献   
57.
Summary The calculation procedures for determining epicentre parameters of weak near shocks with foci in Poland are discussed and tested for explosions with known epicentres.
m m¶rt; ¶rt; n¶rt;u num a uu m num nmua n auauu, u mu a mumuu u, n muu ¶rt;au uu mau. au mam nam (a. 4) nu nuuu na 71 u m ¶rt;u n¶rt; ¶rt; a auu ¶rt;a [11].
  相似文献   
58.
59.
The seafloor of central Eckernförde Bay is characterised by soft muddy sediments that contain free methane gas. Bubbles of free gas cause acoustic turbidity which is observed with acoustic remote sensing systems. Repeated surveys with subbottom profiler and side scan sonar revealed an annual period both of depth of the acoustic turbidity and backscatter strength. The effects are delayed by 3–4 months relative to the atmospheric temperature cycle. In addition, prominent pockmarks, partly related to gas seepage, were detected with the acoustic systems. In a direct approach gas concentrations were measured from cores using the gas chromatography technique. From different tests it is concluded that subsampling of a core should start at its base and should be completed as soon as possible, at least within 35 min after core recovery. Comparison of methane concentrations of summer and winter cores revealed no significant seasonal variation. Thus, it is concluded that the temperature and pressure influences upon solubility control the depth variability of acoustic turbidity which is observed with acoustic remote sensing systems. The delay relative to the atmospheric temperature cycle is caused by slow heat transfer through the water column. The atmospheric temperature cycle as ‘exiting function’ for variable gas solubility offers an opportunity for modelling and predicting the depth of the acoustic turbidity. In practice, however, small-scale variations of, e.g., salinity, or gas concentration profile in the sediment impose limits to predictions. In addition, oceanographic influences as mixing in the water column, variable water inflow, etc. are further complications that reduce the reliability of predictions.  相似文献   
60.
The 2006 western Java tsunami deposited a discontinuous sheet of sand up to 20 cm thick, flooded coastal southern Java to a depth of at least 8 m and inundated up to 1 km inland. In most places the primarily heavy mineral sand sheet is normally graded, and in some it contains complex internal stratigraphy. Structures within the sand sheet probably record the passage of up to two individual waves, a point noted in eyewitness accounts. We studied the 2006 tsunami deposits in detail along a flow parallel transect about 750 m long, 15 km east of Cilacap. The tsunami deposit first becomes discernable from the underlying sediment 70 m from the shoreline. From 75 to 300 m inland the deposit has been laid down in rice paddies, and maintains a thickness of 10–20 cm. Landward of 300 m the deposit thins dramatically, reaching 1 mm by 450 m inland. From 450 m to the edge of deposition (around 700 m inland) the deposit remains <1 mm thick. Deposition generally attended inundation—along the transect, the tsunami deposited sand to within about 40 m of the inundation limit. The thicker part of the deposit contains primarily sand indistinguishable from that found on the beach 3 weeks after the event, but after about 450 m (and roughly coinciding with the decrease in thickness) the tsunami sediment shifts to become more like the underlying paddy soil than the beach sand. Grain sizes within the deposit tend to fine upward and landward, although overall upward fining takes place in two discrete pulses, with an initial section of inverse grading followed by a section of normal grading. The two inversely graded sections are also density graded, with denser grains at the base, and less dense grains at the top. The two normally graded sections show no trends in density. The inversely graded sections show high density sediment to the base and become less dense upward and represents traction carpet flows at the base of the tsunami. These are suggestive of high shear rates in the flow. Because of the grain sorting in the traction carpet, the landward-fining trends usually seen in tsunami deposits are masked, although lateral changes of mean sediment grain size along the transect do show overall landward fining, with more variation as the deposit tapers off. The deposit is also thicker in the more seaward portions than would be produced by tsunamis lacking traction carpets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号