首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   560篇
  免费   22篇
  国内免费   1篇
测绘学   17篇
大气科学   23篇
地球物理   154篇
地质学   241篇
海洋学   42篇
天文学   67篇
自然地理   39篇
  2021年   3篇
  2019年   7篇
  2018年   11篇
  2017年   11篇
  2016年   16篇
  2015年   19篇
  2014年   9篇
  2013年   20篇
  2012年   12篇
  2011年   27篇
  2010年   26篇
  2009年   31篇
  2008年   23篇
  2007年   21篇
  2006年   18篇
  2005年   33篇
  2004年   26篇
  2003年   22篇
  2002年   14篇
  2001年   15篇
  2000年   12篇
  1999年   8篇
  1998年   3篇
  1997年   8篇
  1996年   3篇
  1995年   6篇
  1994年   6篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   6篇
  1988年   5篇
  1986年   7篇
  1985年   7篇
  1984年   15篇
  1983年   14篇
  1982年   8篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1976年   3篇
  1974年   5篇
  1967年   3篇
  1962年   4篇
  1958年   6篇
  1953年   2篇
  1951年   2篇
  1950年   5篇
  1949年   2篇
  1948年   6篇
排序方式: 共有583条查询结果,搜索用时 12 毫秒
91.
This paper explores how, and to what extent, a phase of relief-rejuvenation modifies the mode of surface erosion in an approximately 63 km2 drainage basin located at the northern border of the Swiss Alps (Luzern area). In the study area, the retreat of the Alpine glaciers at the end of the Last Glacial Maximum (LGM) caused base level to lower by approximately 80 m. The fluvial system adapted to the lowered base level by headward erosion. This is indicated by knickzones in the longitudinal stream profiles and by the continuous upstream narrowing of the width of the valley floor towards these knickzones. In the headwaters above these knickzones, processes are still to a significant extent controlled by the higher base level of the LGM. There, frequent exposure of bedrock in channels and especially on hillslopes implies that sediment flux is to a large extent limited by weathering rates. In the knickzones, however, exposure of bedrock in channels implies that sediment flux is supply-limited, and that erosion rates are controlled by stream power.The morphometric analysis reveals the existence of length scales in the topography that result from distinct geomorphic processes. Along the tributaries where the upstream sizes of the drainage basins exceed 100,000–200,000 m2, the mode of sediment transport and erosion changes from predominantly hillslope processes (i.e., landsliding, creep of regolith, rock avalanches and to some extent debris flows) to processes in channels (fluvial processes and debris flows). This length scale reflects the minimum size of the contributing area for channelized processes to take over in the geomorphic development (i.e., threshold size of drainage basin). This threshold size depends on the ratio between production rates of sediment on hillslopes, and export rates of sediment by processes in channels. Consequently, in the headwaters, erosion rates and sediment flux, and hence landscape evolution rates, are to a large extent limited by weathering processes. In contrast, in the lower portion of the drainage basin that adjusts to the lowered base-level, rates of channelized erosion and relief formation are controlled mainly by stream power. Hence, this paper shows that base-level lowering, headward erosion and establishment of knickzones separate drainage basins in two segments with different controls on rates of surface erosion, sediment flux and relief formation.  相似文献   
92.
93.
An extensive study of peridotitic sulfide inclusion bearing diamonds and their prospective harzburgitic host rocks from the 53 Ma Panda kimberlite pipe, Ekati Mine, NWT Canada, has been undertaken with the Re–Os system to establish their age and petrogenesis. Diamonds with peridotitic sulfide inclusions have poorly aggregated nitrogen (<30% N as B centers) at N contents of 200–800 ppm which differs from that of chromite and silicate bearing diamonds and indicates residence in the cooler portion of the Slave craton lithospheric mantle. For most of the sulfide inclusions, relatively low Re contents (average 0.457 ppm) and high Os contents (average 339 ppm) lead to extremely low 187Re/188Os, typically << 0.05. An age of 3.52 ± 0.17 Ga (MSWD = 0.46) and a precise initial 187Os/188Os of 0.1093 ± 0.0001 are given by a single regression of 11 inclusions from five diamonds that individually provide coincident internal isochrons. This initial Os isotopic composition is 6% enriched in 187Os over 3.5 Ga chondritic or primitive mantle. Sulfide inclusions with less radiogenic initial Os isotopic compositions reflect isotopic heterogeneity in diamond forming fluids. The harzburgites have even lower initial 187Os/188Os than the sulfide inclusions, some approaching the isotopic composition of 3.5 Ga chondritic mantle. In several cases isotopically distinct sulfides occur in different growth zones of the same diamond. This supports a model where C–O–H–S fluids carrying a radiogenic Os signature were introduced into depleted harzburgite and produced diamonds containing sulfides conforming to the 3.5 Ga isochron. Reaction of this fluid with harzburgite led to diamonds with less radiogenic inclusions while elevating the Os isotope ratios of some harzburgites. Subduction is a viable way of introducing such fluids. This implies a role for subduction in creating early continental nuclei at 3.5 Ga and generating peridotitic diamonds.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
94.
95.
During the main and early recovery phase of a geomagnetic storm on February 18, 1998, the Equator-S ion composition instrument (ESIC) observed spectral features which typically represent the differences in loss along the drift path in the energy range (5–15 keV/e) where the drift changes from being E × B dominated to being gradient and curvature drift dominated. We compare the expected energy spectra modeled using a Volland-Stern electric field and a Weimer electric field, assuming charge exchange along the drift path, with the observed energy spectra for H+ and O+. We find that using the Weimer electric field gives much better agreement with the spectral features, and with the observed losses. Neither model, however, accurately predicts the energies of the observed minima.  相似文献   
96.
The central trough of the Bolivian Altiplano is occupied by two wide salt crusts: the salar of Uyuni, which is probably the largest salt pan in the world (10,000 km2) and the salar of Coipasa (2,500 km2). Both crusts are essentially made of porous halite filled with an interstitial brine very rich in Li, K, Mg, B (up to 4.7 g/l Li, 4.3 g/l B, 30 g/l K and 75 g/l Mg). Lithium reserves are the highest known in the world, around 9 × 106 tons. Potassium, magnesium and boron reserves in brines are also important (around 194 × 106 tons K, 8 × 106 tons B and 211 × 106 tons Mg).

The crusts are the remnant of saline Lake Tauca (13,000–10,000 yr BP). Its salinity was estimated approximately at 80 g/l. Its paleochemistry was derived in two ways: (1) by dissolving the present amounts of all chemical components in the former lake volume, and (2) by simulating the evaporation of the major inflows to the basin. The resulting chemical compositions are quite different. The dissolution-derived one is 5 to 50 times less concentrated in Li, K, Mg, B than the evaporation-simulated ones. However all compositions present the same Na and Cl contents. This suggests either a removal of bittern salts or an enrichment of the former lake water in Na and Cl.

The most probable interpretation is that Lake Tauca redissolved a salt crust akin to that existing today. Several older lakes have been detected on the Altiplano. Nevertheless, such an explanation only pushes the problem back. It is likely that the anomaly was transferred from one lake to an other. Three hypotheses may be put forward: (1) bittern seepage through bottom sediments, (2) uptake of the missing components by minerals, and (3) leaching of ancient evaporites from the catchment area at the beginning of the lacustrine history of the basin. The excess halite could have been recycled from lake to lake. This latter process seems to be the most effective to explain the large excess of Na and Cl over the bittern solutes — Li, K, Mg and B. The occurrence of almost pure Na/1bCl saline springs flowing out from a gypsum diapir in the northern Altiplano gives substantial support to this hypothesis.  相似文献   

97.
An optical method is discussed for the determination of the line average of the vertical temperature gradient, which is subsequently used for the calculation of the scaling temperature and of the sensible heat flux. The method requires conventional surveying instrumentation only, and the measurements are carried out easily. The attainable accuracy is estimated as 10% or better. Observations are also possible during night or light-wind conditions. In a field experiment, results from this optical method were compared with measurements taken with a conventional covariance eddy-flux instrument. Excellent agreement between both methods was found.  相似文献   
98.
The last two successful flybys of Io by Galileo in 2001 (orbits I31, I32) allowed the Near Infrared Mapping Spectrometer to enrich its collection of IR spectral image cubes of the satellite. These data cover hemispheric portions of Io, several volcanic centers as well as their surroundings with a spatial resolution ranging from 2 to 93 km pixel−1. They map thermal emission from the hot-spots and the distribution of solid SO2 in the 1.0-4.7 μm spectral range. We obtain maps of SO2 abundance and granularity from the NIMS data using the method of Douté et al. (2002, Icarus 158, 460-482). The maps are correlated to distinguish four different physical units that indicate zones of SO2 condensation, metamorphism and sublimation. We relate these information with visible images from Galileo's Solid State Imaging System and with detailed mapping of the thermal emission produced by Io's surface. Our principal goal is to understand the mechanisms controlling how lava, pyroclastics and gas are emitted by different types of volcanoes and how these products evolve. The 800 km diameter white ring of fallout created by a violent “Pillanian” eruption during summer of 2001 is at least partly composed of solid SO2 and has enriched preexisting regional deposits. Orange materials have been recently or are currently emplaced 240 km south from the main eruption site, possibly as sulfur flows. A similar event may have taken place in the past at Ababinili Patera (12.5° N, 142° W). Carefull study of SO2 maps covering the Emakong region also suggests that sulfur forms the bright channel-fed flow emerging from the south eastern side of the caldera. Within the main caldera of Tvashtar Catena completely cooled patches of crust exist. Elsewhere, the caldera is still cooling from previous episodes of flooding. We confirm that Amirani emits constantly large amount of SO2 gas by interaction of fresh lava with the volatiles of the underlying plains. Nevertheless SO2 frost is not the major component of the bright white ring seen in the SSI images. Over the whole Gish Bar region, SO2 frost seems barely stable and is constantly regenerated. The stability increases along gray filamentary structures which could be faults filled with materials having peculiar thermal properties. Northwest of Gish Bar Patera, a localized bright deposit shows an unusual spectral signature potentially indicative of H2O molecules forming ice crystals or being trapped in a nonidentified matrix. The Chaac region may present a thickened old crust reducing the geothermal flux to levels lower than 0.5 W m−2 and thus creating a cold trap for SO2. Looking at the abundance and degree of metamorphose of SO2, we establish the relative age of different flows and ejecta for the Sobo Fluctus. Finally the assumption that the white patches in visible images indicate SO2 rich deposits is once again challenged. In the Camaxtli region we identify a topographically controlled compact white deposit showing only moderate SO2 abundance. In contrast, we detect two spots of quite pure SO2 ice on the gray flanks of Emakong. Furthermore, the close association of fumarolic SO2 and red S2 already noted for several volcanic centers is observed at Tupan.  相似文献   
99.
We report laboratory studies on the 0.8 MeV proton irradiation of ices composed of sulfuric acid (H2SO4), sulfuric acid monohydrate (H2SO4·H2O), and sulfuric acid tetrahydrate (H2SO4·4H2O) between 10 and 180 K. Using infrared spectroscopy, we identify the main radiation products as H2O, SO2, (S2O3)x, H3O+, , and . At high radiation doses, we find that H2SO4 molecules are destroyed completely and that H2SO4·H2O is formed on subsequent warming. This hydrate is significantly more stable to radiolytic destruction than pure H2SO4, falling to an equilibrium relative abundance of 50% of its original value on prolonged irradiation. Unlike either pure H2SO4 or H2SO4·H2O, the loss of H2SO4·4H2O exhibits a strong temperature dependence, as the tetrahydrate is essentially unchanged at the highest irradiation temperatures and completely destroyed at the lowest ones, which we speculate is due to a combination of radiolytic destruction and amorphization. Furthermore, at the lower temperatures it is clear that irradiation causes the tetrahydrate spectrum to transition to one that closely resembles the monohydrate spectrum. Extrapolating our results to Europa’s surface, we speculate that the variations in SO2 concentrations observed in the chaotic terrains are a result of radiation processing of lower hydration states of sulfuric acid and that the monohydrate will remain stable on the surface over geological times, while the tetrahydrate will remain stable in the warmer regions but be destroyed in the colder regions, unless it can be reformed by other processes, such as thermal reactions induced by diurnal cycling.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号